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The use of Deep Neural Networks for remote sensing scene image analysis is growing fast. Despite this, data sets
on developing countries are conspicuously absent in the public domain for benchmarking machine learning al-
gorithms, rendering existing data sets unrepresentative. Secondly, current literature uses low-level semantic scene
image class definitions, which may not have many relevant applications in certain domains. To examine these
problems, we applied Convolutional Neural Networks (CNN) to high-level scene image classification for identi-
fying patterns in urban housing density in a developing country setting. An end-to-end model training workflow is
proposed for this purpose. A method for quantifying spatial extent of urban housing classes which gives insight
into settlement patterns is also proposed. The method consists of computing the ratio between area covered by a
given housing class and total area occupied by all classes. In the current work this method is implemented based
on grid count, whereby the number of predicted grids for one housing class is divided by the total grid count for
all classes. Results from the proposed method were validated against building density data computed on Open-
StreetMap data. Our results for scene image classification are comparable to current state-of-the-art, despite
focusing only on most difficult classes in those works. We also contribute a new satellite scene image data set that
captures some general characteristics of urban housing in developing countries. The data set has similar but also

some distinct attributes to existing data sets.

1. Introduction

Knowledge of spatial housing characteristics in an area has implica-
tions and applications in many domains including public and environ-
mental health, utility and urban planning, and emergency or
humanitarian disaster response. For example, the spread of airborne in-
fectious diseases such as Tuberculosis (and Covid-19 is a good example
too) is closely associated with human overcrowding in many kinds of
places including homes. High population growth rates and rapid urban-
ization are causing housing shortage in many developing country cities.
For example in Uganda, the housing shortage in major urban areas is
estimated at over two million units and, is expected to reach three million
by 2030 if not addressed. To put that into context, 47 per cent of
households in Uganda comprising an average of 5 persons shared a
bedroom in 2014, according to the Uganda National Bureau of Statistics
(Uganda Bureau of Statistics, 2016). The housing shortage coupled with
economic deprivation has led to sprawling of informal settlements with
squalid living conditions in urban centers, posing serious public health
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risk (Ezeh et al., 2016; Elsey et al., 2016; Lilford et al., 2016; Riley et al.,
2007).

The United Nations Sustainable Development Goals (SDG) goal
number 11 urges cities to address existing housing inadequacies if they
are to ever become sustainable (United Nations, 2015). We believe that a
first step to addressing the problem of poor quality urban housing in
developing countries is to understand how extensively it is spread across
geographic space. To this end we propose the use of Deep Neural
Network (DNN) methods and remote sensing imagery to identify patterns
in urban housing quality. In this work, the phrase "housing quality" refers
to the extent of building congestion (or crowding) per unit geographic
area.

DNN are increasingly being applied for classifying remotely sensed
land use scene imagery and have achieved high accuracy levels. Most of
the existing literature in this area however, is focused on classifying
scenes based on class definitions that may be considered semantically
low-level. Secondly, majority of the remote sensing data sets used for this
purpose relate to developed country settings where land use is generally
carefully planned and regulated. In most developing countries however,
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a large proportion of land use for human purposes (for example, resi-
dential and commercial use) is informal and poorly regulated. A conse-
quence of this is that scenes constituting semantically similar land use
types vary significantly across developed and developing country set-
tings. Figure 1 shows example images taken from two existing remote
sensing land use data sets. In the top row are images from UC Merced
data set (Yang and Newsam, 2010) and in the middle row are images
from NWPU-RESISC45 data set (Cheng et al., 2017). In the bottom row
are example images from our data set. As can be seen there are stark
differences in what is considered, for example, dense residential or high
density housing in the three data sets.

Two important questions arise from the scenario described in the
previous paragraph. First, we think that classifying land use scenes
comprising multiple geographical features using low-level semantic class
definitions does not render the output to many relevant applications in
certain domains. For example, classifying remotely sensed scene images
as building, airplane, road, etc such as in (Cheng et al., 2017; Kang et al.,
2018; Castelluccio et al., 2015; Basu et al., 2015) may not be of much
relevant application in identifying neighborhoods at high risk of
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infectious diseases associated with indoor overcrowding. Secondly,
existing DNN techniques have not been benchmarked on representative
remote sensing scene image data sets. In particular, data sets from
developing country settings have not been considered for benchmarking
DNN algorithms due to absence of such data sets in the public domain. It
is demonstrated in (DeVries et al., 2019) that the performance of ma-
chine learning algorithms will generally degrade when trained using
geographically unrepresentative data sets.

In the current work we employed DNN methods for land use scene
image classification in a developing country context to address some of
the gaps identified above. Specifically, we used Convolutional Neural
Networks (CNN) and satellite imagery for identifying housing density
patterns in urban areas based on high-level semantic class definitions.
Housing density is used here to mean the extent to which building units
are congested or crowded. A method is also proposed for quantifying
spatial extent of urban housing classes that provides useful insight into
settlement patterns. The method involves computing the ratio between
area covered by a particular urban housing class and total area occupied
by all classes. In the current work we computed this ratio based on grid

Sparse residential

(a) Images from UC Merced data set

Sparse residential

(c) Images from our data set

Figure 1. Example scene images taken from three remote sensing data sets. Some differences can be seen between scenes constituting semantically similar land-use
types across geographic regions. See, for example, images for the class Dense residential/High density.
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count whereby we divided the number of grids predicted by the CNN
model as belonging to one class by the total number of grids for all
classes. Results from the proposed method were validated against
building density data computed on OpenStreetMap data. Our results for
scene image classification are comparable to current state-of-the-art,
despite focusing only on most difficult classes in those works. We also
showed that estimating spatial extent of urban housing classes using our
method is at par with an alternative approach based on OpenStreetMap
buildings data. A new satellite scene image data set that captures some
general characteristics of urban housing in developing countries has been
proposed. The data set has similar but also some distinct attributes to
existing data sets. The contributions of our work therefore includes,

1. Our experimental results demonstrate that CNN are useful for iden-
tifying housing density patterns in developing country urban settings.

2. An end-to-end deep learning workflow based on fine-tuning pre-
trained CNN models is proposed for identifying housing density
patterns in urban areas of low-income countries.

3. A method for quantifying spatial extent of identified housing density
classes has also been proposed. The method is comparable to an
alternative approach based on OpenStreetMap buildings data.

4. We also contribute a first of its kind, relatively large satellite scene
image data set based on a sub-Sahara Africa land-use for building.
This high resolution data set is suitable for analysis of phenomena
such as high resolution population distribution mapping. It will also
be of benefit for benchmarking new machine learning algorithms.

The rest of this paper is organized as follows. Sections 2, 3, and 4
present related work, materials, and methods, respectively, while results
are found in section 5. Discussion and conclusion and future work are
provided in section 5, 6 and 7, respectively.

2. Related work

Although modern DNN have a fairly recent history, the volume of
research utilizing these methods is growing rapidly. In this section we
highlight some of the recent works that employ DNN, especially CNN, for
semantic analysis of remotely sensed scene images.

Kang et al. (Kang et al., 2018) proposed a framework for classifying
images of individual buildings based on functionality by utilizing CNN
and street view images combined with remote sensing imagery. The
study by Albert et al. (Albert et al., 2017) employed CNN to analyze
urban physical environments across European cities based on ten classes
derived from Urban Atlas land-use classification data set. Cheng et al.
(Cheng et al., 2017) on the other hand reviewed recent progress in the
field of aerial scene image classification, proposed a new data set, and
then benchmarked state-of-the-art machine learning algorithms on it.
Zhang et al. (Zhang et al., 2016) suggested a gradient boosting random
Convolutional Network (GBRCN) framework that can be used to combine
multiple different DNN for scene image classification. They report higher
accuracy for their ensemble framework than methods that use single
models. Jean et al. (Jean et al., 2016) posted high accuracy when they
deployed CNN on remote sensing data to predict poverty in developing
countries. Yuan (2018) developed CNN architecture with a final stage
that integrates activations from multiple preceding stages for pixel-wise
building footprint extraction from remote sensing imagery and
geographic information systems (GIS) data. The work of Romero et al.
(Romero et al., 2015) proposes a method for unsupervised deep feature
extraction based on learning sparse features for aerial image classifica-
tion. They demonstrate the superiority of deep architectures over shallow
ones based on their method using the UC Merced data set (Yang and
Newsam, 2010). Ajami et al. (Ajami et al., 2019) used CNN and very high
resolution (VHR) images for identifying degree of deprivation in slums.

It is worth noting that all the above studies represent one research
direction of utilizing aerial imagery directly for scene classification.
However, another line of research uses the approach of object detection
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and extraction from aerial imagery for the same task of semantic scene
classification. One of the earliest works along this line is that of Minh
(Mnih, 2013), who developed a framework based on CNN for automated
detection and labeling of roads and buildings from aerial images. Similar
to this work is that of Vakalapoulou et al. (Vakalapoulou et al., 2015).
Wurm et al. (Wurm et al., 2019) used CNN and remote sensing imagery
for segmenting slums in satellite images. The work in (Yao et al., 2020)
attempts to solve the problem of weakly supervised object detection
(WSOD) from remote sensing imagery using only image-level annota-
tions (no object location information is required) during model training.
They propose a dynamic curriculum learning strategy that progressively
learns an object detector by feeding training images of increasing diffi-
culty that matches current detection capability. Further improvements to
WSOD can be found in (Feng et al., 2020) and (Cheng et al., 2020). Other
methods have also been explored for improving the discriminative
capability of CNN. For example, in (Cheng et al., 2018; Cheng 2018) a
method is proposed based on learning discriminative CNN for improving
image scene classification. Effectiveness of the proposed method over
state-of-the-art is demonstrated using multiple remote sensing bench-
mark data sets. Part-based CNN have also been suggested for discrimi-
nating between objects belonging to similar categories under the
framework of fine-grained visual categorization (FGVC), see for example
work in (Han et al., 2019; Zhang et al., 2014; Krause et al., 2014).

One of the currently persisting challenges in the field of semantic
scene classification from remote sensing imagery using DNN is lack of
large labeled data sets for evaluating algorithms. Some researchers sug-
gest that existing data sets are too small in terms of total image count and
number of classes and, they are saturated on algorithm accuracy, calling
for development of new and larger data sets. This situation is said to limit
development of new DNN algorithms. Current data sets available in the
public domain include two large satellite image sets put together by Basu
et al. (Basu et al., 2015), one of which we used in the present work to
train a pre-trained model as a preceding stage to fine-tuning on our own
data set. For the interested reader, a recent review of existing data sets
can be found in (Cheng et al., 2017). The lack of labeled satellite scene
image data sets for training ML algorithms is compounded by the huge
human labor costs and inefficiencies associated with manual annotation
of such images. To address this problem, a number of solutions are being
proposed. For example, the work of Yao et al. (Yao et al., 2016) proposes
a unified framework for automated semantic annotation of high resolu-
tion optical satellite images. The method combines discriminative
high-level feature learning with weak, supervised feature transfer.

We would like to observe that despite the surging interest in scene
classification using aerial imagery owing to its potential applications, no
study has curated and/or utilized globally inclusive data sets. Of partic-
ular concern is the fact that scene image data sets from developing
country settings are conspicuously absent in the public domain for
evaluation and benchmarking of DNN algorithms. The goal of this
research is therefore, to partly address this gap by suggesting a scene
image data set extracted exclusively over a developing country. Our data
set has some distinctive characteristics over some of the existing data
sets. For example, it consists of three classes made up of geographical
object type "building" that includes some unconventional built structures
in addition to having extreme crowding in one class. As a use case, we
applied our data set to the task of classifying and mapping housing
density.

3. Materials
3.1. Study area

The geographical area of study is the country of Uganda, which lies
between 10 29 South and 40 12 North latitude, 290 34 East and 350
0 East longitude. Uganda had a population of 35 million people in 2014
and covers geographical area of 241,551km? (Uganda Bureau of Statis-
tics, 2016). The current analysis is based on twenty one districts (out of
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113) that host the most populated urban centers. A map of the study area
is shown in Figure 2.

3.2. Data sets

Our satellite scene image data set consists mostly of land-use type,
"buildings". In other words, we are interested in building or housing built
structures as geographical objects of interest. A land-use type refers to the
activity or activities taking place on the land at a particular point in time
(Shapiro, 1959). The data set has three classes namely high-, medium-,
and low-density housing. These density classes were constructed based
on spatial distribution of buildings in a uniform size area by grouping
together images with similar building density, after eliminating all
others. For this task we used a clustering tool developed using a
pre-trained deep CNN that hierarchically clusters images based on con-
tent https://elcorto.github.io/imagecluster. The choice of housing den-
sity classes and their appearance in satellite scene images was guided by
both intuition and works in the benchmark data sets shown in Figure 1.
There was no need to label the images individually since we used a
feature of Keras (Chollet, 2015) that extract class labels directly from
directory names. Each composite image consists of red, green, and blue
spectral bands of size 224 by 224 pixels resolution or 250m by 250m
coverage for an image on the earth's surface. First of its kind from a
sub-Sahara Africa setting, the data set is large on both per class (between
7,000 and 12,000 images) and total image count (31,000 images). It has
high variability on object form, occlusion, orientation, cloud cover,
background, and illumination. It also has high within-class diversity and
between-class similarity i.e., classes in the data set overlap with each
other, especially the high and medium density classes (see sample images
in Figure 3). These characteristics make our data set more challenging
compared to other similar data sets. Example images taken from the three
housing density classes of our data set are shown in Figure 3.

As can be seen, there are observable differences in scene objects
among images across the study area. For example, some housing struc-
tures in the northern region are small huts constructed of mud and wattle
wall with grass thatch roof while all structures from the central region (as
well eastern and western regions) have iron sheet roof. Table 1 provides

Figure 2. Map of Uganda showing twenty one districts (in yellow) over which
satellite images were extracted for training a CNN model for identifying patterns
in urban housing density. Within each district images were sampled over
selected urban administrative units.
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details of image count by region of study area and by housing density
class.

4. Methods
4.1. Sampling and satellite image acquisition

Our strategy to acquire high quality data samples for scene image
classification was partly inspired by the work of Albert et al. (Albert et al.,
2017). The strategy is based on use of free data sources for which we
selected Google Maps Static API. This service allows free API requests per
month up to a certain limit which was sufficient to generate enough
images for our needs. Based on sample locations defined by
latitude-longitude pair, image patches of size 224 by 224 pixels at zoom
level 17 (1.2m per pixel spatial resolution or approx. 250m? coverage for
a satellite scene image) were extracted. Our process for defining locations
to extract images involved partitioning a shape-file polygon of each
district into equal-sized grids of 250m. We then retrieved centroid in-
formation (longitude-latitude pair) of each grid and used it to extract
satellite images. Data acquisition was carried out over a period of one
month in August/September, 2018.

4.2. Model training

The task was to classify housing scene images into three classes,
namely high density housing, medium density housing, and low density
housing. We adopted a model development strategy common in the
literature to ensure we got high classification results with minimal effort.
Our strategy involved two comparable training modalities, 1) fine-tuning
VGG16 and ResNet-50 directly on our data set and, 2) pre-training
VGG16 and ResNet-50 on DeepSat data (Sat-6) (Basu et al.,, 2015)
before fine-tuning on our data set as in (Albert et al., 2017). VGG16
(Simonyan and Zisserman, 2014) and ResNet-50 (He et al., 2016) are
models that have been pre-trained on the ImageNet data set (Deng et al.,
2009). We chose VGG16 and ResNet-50 for their superior and compa-
rable performance on similar data sets as shown in recent literature, see
(Cheng et al., 2017) and (Albert et al., 2017).

The model with highest validation accuracy during training under
each modality was saved for evaluation. The strategy adopted in this
work (of fine-tuning a pre-trained model) has many benefits. For
example, it eliminates network architecture design time and requires less
computational resources. It also provides better accuracy by order of
magnitude over training a model from scratch, or extracting features
from a data set using pre-trained models to be used for training a new
classifier.

4.3. Model evaluation

We used multiple standard metrics in machine learning research to
evaluate classification performance of our CNN model namely overall
accuracy, AUC (area under Receiver Operating Characteristic Curve
ROC), confusion matrix, precision-recall, and F1-score. Overall accuracy,
often expressed as a percentage, is defined as the count of correctly
classified samples (regardless of class they belong to) divided by total
count of samples. The ROC is a graphical plot to illustrate the diagnostic
capability of a classifier against varying discrimination threshold. The
AUC is the percentage of area under ROC curve, which ranges between
0 and 1. The confusion matrix on the other hand summarizes classifier
predictions with respect to individual classes. Precision measures a
classifiers ability to label all samples correctly, recall is its ability to
retrieve all positive samples while Fl-score is a weighted average of
precision and recall with best value at 1 and worst at 0. The evaluation
protocol we used involved setting aside (hold-out) a validation set on
which we evaluated the trained model.


https://elcorto.github.io/imagecluster

R. Sanya, E. Mwebaze

Central, West, East regions

-- example images --

Q&
& S, S
F F s 4

housing density classes

Heliyon 6 (2020) e05617
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Figure 3. Example satellite scene images taken from the three housing density classes in our data set. Images from central, eastern, and western regions of the study
area (left) have similar appearance of housing density classes while those from the northern region (right) have some unique building artifacts.

4.4. Experimental setup

Our experiments were implemented in Keras (Chollet, 2015), an open
source deep learning framework, using TensorFlow (Abadi et al., 2015)
as back-end. Common regularization techniques namely data augmen-
tation and drop out were utilized during training to improve model
generalization capability. Data augmentation techniques used include
random rotation (15° maximum either direction), shearing (up to 0.1
radians), zooming (0.2), and horizontal/vertical flipping. The input im-
ages were of size 224 by 224 pixels composed of red, green, and blue
(RGB) spectral bands. Adadelta (with variable learning rate) was used to
optimize network loss function (categorical cross entropy) in all experi-
ments. We used a ratio of 80:20 per cent to split our data set into training
and test sets. A total of five train-test cycles were completed. The models
were trained for at most 100 epochs. Our hardware set up is a remote
virtual machine consisting of 1 GPU + 8 CPUs and 30 GB RAM.

4.5. Mapping urban housing patterns

We deployed the VGG16 model fine-tuned on our data set to predict
housing density on fresh remote sensing data collected across the study
area. Fresh data extraction was done over urban centers where training
data was previously collected and, over other urban centers where
training data was not collected. Housing density predictions were made
on this new data set.

Class predictions for this new data were retrieved and used to create
housing density maps, which are presented as raster maps for easy visual
interpretation.

We adopted a qualitative approach to evaluate the predictions by
visually analyzing and interpreting raster maps of predicted housing
distribution patterns against ground truth data obtained from Google
Static Maps API. We also estimated the spatial extent of each housing
density class and present the results as percentage. This is done by
dividing the area of land covered by a given housing density class by the
total land area of all classes. Our method for estimating spatial extent
(i.e., proportion of land area) e for a housing density class i was given by
Eq. (1),

Sla

where e; is spatial extent for housing density class i, g; is land area for

(€Y

€i

k
class i, and (> a) sums up land area for all classes from 1 up to k (in our
1

case, k = 3).

In the current work we implemented a simple method for calculating
e based on grid count. For example, to calculate spatial extent for high
density housing ey, we used Eq. (2),

E’(;nh (2)

S
>y +n, +my)

Table 1. Satellite scene image count by regions of our study area and by housing density class.

Class/region North West Central East Class Total
High density housing 814 567 8,111 984 10,476
Medium density housing 1,061 937 4,580 1,357 7,935

Low density housing 1,958 925 8,077 1,742 12,702
Regional Total 3,833 2,429 20,768 4,083 31,113
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Table 2. Classification accuracy for CNN models based on VGG16.

Training modality

Accuracy (%)
VGG16 model fine-tuned directly on our data set 79.9
VGG16 model trained on DeepSat, fine-tuned on our data set 75.0

True label

2500

2000

1500

1000

- 500

T

Q

~ i
Predicted label

Figure 4. Confusion matrix plot for VGG16 model fine-tuned on our data set. Key: O for high-, 1 for low-, and 2 for moderate density housing.
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Figure 5. AUC curve for VGG16 model fine-tuned on our data set. Key: O for high-, 1 for low-, and 2 for moderate density housing.
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Table 3. Precision, recall, and f1-score values for CNN model fine-tuned on our data set.

Class Precision Recall F1-Score
High density housing 0.94 0.70 0.80
Low density housing 0.91 0.84 0.88
Medium density housing 0.59 0.84 0.69
Average/Total 0.84 0.80 0.81

where ny, is count for predicted high density housing grids, ny, is count for
predicted medium density housing grids, and n, is count for predicted low
density housing grids. The value of e, will range from 0 for no crowding,
to 1 for completely crowded housing.

To demonstrate the effectiveness of our approach for quantifying
spatial extent of urban housing classes, it was necessary to validate the
results. For this purpose we used a different method for estimating
building density Bg given by Eq. (3),

b

Bd: A

3)

where b is count of buildings in an area while A is size of the area in km?.

To implement the method in Eq. (3), we used OpenStreetMap (OSM)
Project's buildings data (OpenStreetMap, 2017) for Uganda. This data
consists of Geographic Information Systems (GIS)-based vector data
whereby buildings are represented using polygons. The OSM data is
publicly available for free under the Open Database 1.0 License. We
downloaded this data from the Geofabrik website at http://downlo

round truth housing density
% TN S W 6

ad.geofabrik.de as ESRI shapefiles. OSM data is updated on a daily
basis hence, the analysis in this work used latest data as of August 5t
2020. Pre-processing of the buildings shapefile involved transforming the
Coordinate Reference System (CRS) from EPSG:4326 - WGS 84 -
Geographic, whose units is degrees, to EPSG:32636 - WGS 84/UTM zone
36N - Projected, whose units is meters. This transformation was neces-
sary for two reasons. To convert the CRS into relevant one for the
geographical region of the world being analyzed (i.e., Uganda) and allow
for calculation of area in square kilometers. Another pre-processing we
performed involved clipping the buildings shapefile to our geographical
units of interest based on relevant information from administrative
boundaries shapefiles for Uganda. Both tasks were accomplished using
QGIS (version 3.8.1-Zanzibar), an open source GIS software.

Calculating building density for a geographical region of interest
based on Eq. (3) using OSM buildings data involved two steps. First, we
counted all building polygons available in buildings shapefile of the re-
gion in question. Secondly, we divided the building polygon count by the
area (in km?) of that region.

Predicted housing density
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(b) Kasubi parish, Kampala region

Figure 6. Two regions of Kampala showing ground truth (Google imagery) and corresponding predicted housing density estimated using method in Eq. (1). Color key:
deep blue (or 0) for high density housing area, purple (or 1) for low, and yellow (or 2) for medium.
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Ground truth housing density Predicted housing density

20

0.5

0.0

(a) Njeru East parish, Jinja region

Ground truth housing density Predicted housing density

20

(b) Walukuba West parish, Jinja region

Figure 7. Two regions of Jinja showing ground truth (Google imagery) and corresponding predicted housing density estimated using method in Eq. (1). Color key:
deep blue (or 0) for high density housing area, purple (or 1) for low, and yellow (or 2) for medium.

Table 4. Spatial extent (%) of housing density classes for selected parishes in Kampala and Jinja estimated using method in Eq. (1).

Class Naguru 2 Kasubi Njeru East Walukuba West
High density housing 94 92 21 56

Low density housing 00 05 51 10

Medium density housing 06 03 28 34

Total 100 100 100 100

Table 5. Spatial extent of housing density classes in Kampala and Jinja estimated using method in Eq. (1).

Class/Proportion (%) Kampala Jinja
High density housing 70 80
Low density housing 16 14
Medium density housing 14 06
Average/Total 100 100

Table 6. Building density classes (column 2) used in method 2 (Equation 3).

Class Density range Population range
High density >4,000 >40,000
Medium density 2,000-4,000 10,000-40,000
Low density 0-1,999 0-9,999
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Table 7. Results of classifying some Kampala parishes using method 1 (Equation 2) and method 2 (Equation 3).

Parish Method 1 Method 2
Kasubi High density High density
Naguru 2 High density Low density
Bwaise 3 High density High density
Kisenyi 1 Medium density Low density
Kololo 2 Low density Low density
Mulago 2 High density High density
5. Results results may be qualitatively understood by visually inspecting and

5.1. Classification

Classification accuracy for the two training modalities is provided in
Table 2. Since the ResNet-50 model performed worse on our data set than
the VGG16 model, we report the better results only. As can be seen in the
table, the VGG16 model fine-tuned directly on our data set gave better
overall accuracy (79.9 per cent) on the test set than the VGG16 model
pre-trained on DeepSat data prior to fine-tuning on our data set (75 per
cent). Therefore, prediction and analysis of housing patterns presented in
the next section is based on this model only. The confusion matrix and
AUC plots for the VGG16 model fine-tuned on our data set are displayed
in Figures 4 and 5, respectively. Table 3 provides details of precision,
recall, and f1-Score values.

5.2. Housing density mapping and analysis

We present results of mapping and analyzing housing density patterns
using both quantitative and qualitative approaches. To enable interpre-
tation of results using the latter approach, we visualized housing density
predictions as raster maps. Examples of ground truth (Google Static Maps
API imagery) and predicted housing density patterns at 250m? grid are
shown in Figures 6 and 7.

Figure 6 (a) and (b) show two sites in Kampala while Figure 7 (a) and
(b) are other two sites in Jinja. The ground truth images are overlaid with
a grid layer (each grid is also 250m? to aid in identifying corresponding
grids on the predicted housing density raster. Our model predicts the two
selected parishes in Kampala as predominantly high density housing
places with more than 90 per cent. One region in Jinja is predicted to be
low-density housing area (Njeru East parish, at 51 per cent) while
Walukuba West is predicted to be high-density (56 per cent) with sig-
nificant proportion of medium density housing (34 per cent). These
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interpreting the ground truth and predicted housing density raster maps.
For example, the dominance of deep blue colored grids shows that the
two parishes in Kampala are high density areas while dominance of
purple colored grids suggests Njeru East parish is generally low-density
housing area.

Results of quantitatively analyzing housing density patterns in the
four parishes are shown in Table 4. On the other hand, Table 5 shows
estimated proportion of each housing density class in Kampala and Jinja.
As can be seen in the latter table, Kampala and Jinja are composed mostly
of high density housing with 70 and 80 per cent, respectively.

5.3. Comparing housing classification methods

Here, we compare housing/building density classification generated
using method 1 (Egs. (1) and (2)) and method 2 (Equation 3). To help
with the comparison, we generated building density classification for 22
(out of a total 89, thus representing 24%) of Kampala City parishes using
method 2. We grouped results for the buildings classification into three
classes: high, medium, and low building densities to correspond with the
number and naming convention for classes used in method 1, as shown in
Table 6.

Results of classifying some Kampala parishes are given in Table 7.
Results for Kasubi and Naguru 2 (the two parishes referenced in Table 4
and Figure 6) are highlighted in bold text. It can be seen that Kasubi is
classified as a high density housing/building area by both methods.
However, Naguru 2 is classified as high density by method 1 but low
density by method 2.

To give some context to the building density analysis, we provide
population data derived from Uganda's 2014 census (Uganda Bureau of
Statistics, 2016), for each of the 22 Kampala parishes. This is visualized
as a scatter plot in Figure 8. This analysis shows that Kasubi is a high
density building area, as well as a high population area. Naguru 2 on the
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Figure 8. Building density vs. population size for 22 parishes of Kampala City.
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other hand, is a low density building and medium population parish.
These results (buildings/housing density predictions) are intuitive and
consistent with ground truth data (Google images) for the two parishes in
Figure 6.

6. Discussion

We had expected the VGG16 model pre-trained on DeepSat data prior
to fine-tuning on our data set to outperform the one fine-tuned directly
on our data set in conformity with results in (Albert et al., 2017), for the
reason that the former data set has similar characteristics as ours. This
was not the case however, suggesting there was no learning gain from
pre-training the VGG16 model on the DeepSat data. At the moment we
cannot understand why this is so, but speculate that it has something to
do with differences in image size whereby our data set has image size 224
by 224 pixels while the DeepSat data has 28 x 28 pixel images. Image size
might have implications for the amount and diversity of features avail-
able for learning to distinguish high level semantic objects as is the case
in our work.

The classification accuracy we obtained (approx. 80 per cent) is not as
high as state-of-the-art results (90 per cent) for this kind of data set. This
however, can be understood given the high-level semantic class defini-
tions used in our work which comprises only the most difficult three
classes in the state-of-the-art (Cheng et al., 2017) and in (Albert et al.,
2017). Despite this difficulty, our results are comparable to those in the
two works. Another limitation of our work comes from subjective defi-
nition and construction of housing density classes, because a single scene
image could potentially be placed in one or the other class, especially in
the case of high- and medium density classes. This is manifested by the
fact that most of the errors made by our model involve these two classes.

We also failed to distinguish the kind of neighborhood in a scene
image based on building type/density for example, industrial, commer-
cial, upscale residential, slum, etc, which would have been more infor-
mative in understanding current spatial patterns in building/housing
distribution. For example, Zhang et al. (Zhang et al., 2017) showed that
commercial areas tend to have higher density than other types of land use
for building, even though this may not necessarily be the case in devel-
oping countries. We indirectly validated spatial extent of housing classes
estimated using our method in Egs. (1) and (2). This was done using an
alternative approach based on OSM data. While the results of validation
were promising, we could not establish how complete and accurate the
OSM buildings data set for our study area was. Such a validation would
have obviously benefited better from an established, suitable quantita-
tive methodology and data set which currently are not available to us.
Lastly, we have not evaluated our model's ability to generalize to data
sets from other developing regions outside of the study area. In view of
these and other limitations we may not have identified, we can only
advise cautious interpretation of our results, especially the housing
density maps and any analyses based on them.

With respect to estimating housing density from remote sensing data,
work most similar to ours is that of Zhang et al. (Zhang et al., 2017) . The
authors propose a method for estimating building density BD in a 240m?
(200 by 200 pixels) grid centered at (i, j) as shown in Eq. (4),

_ Sbuilding (17/)

BD;; = —
) Slzmd(l:])

(C))

where Spyilding is total area occupied by buildings in a given grid and Sjang
is total area size of the grid.

While the goal of their method is simply to estimate the total area
occupied by buildings in a square grid, the goal of our method (Equation
1) is to estimate the area occupied by a specific housing density class in a
much larger geographic region of interest. In our case this area is
computed by summing up pixels that have been identified by the CNN
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model to belong to a particular housing density class based on features
learned from raw images. In their case the total area occupied by
buildings is derived from the sum of areas of polygons falling within
boundaries of a grid.

7. Conclusion and future work

We set out to investigate CNN for high-level semantic scene image
classification based on housing density prediction in developing coun-
tries as case study. The results we have obtained are encouraging given
the challenging nature of the task owing to subjective class definition and
data set construction.

Our contribution to existing body of knowledge is several folds. We
make a contribution to the field of applied Machine Learning by
deploying a CNN model to the task of identifying patterns in urban
housing. For this task we proposed an end-to-end workflow for using a
CNN model for housing density mapping based on fine-tuning pre-
trained models on training data. Furthermore, the results obtained by a
method we proposed for estimating spatial extent of housing density
classes gives insight into current state of human settlement patterns in
the study area, which knowledge is useful for urban planning and
development, among other uses. Lastly, our work contributes a new
remote sensing data set on spatial housing patterns that will be of benefit
for benchmarking machine learning algorithms. As future work, we plan
to investigate implications of current housing characteristics in the study
area together with other related factors on urban phenomena such as
infectious disease distribution in geographic space.
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