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ABSTRACT

Infectious diseases have become problematic throughout the world, threatening

individuals who come into contact with pathogens responsible for transmitting

diseases. Pneumoccocal pneumonia, a secondary bacterial infection follows an

influenza A infection, responsible for morbidity and mortality in children, elderly

and immuno–comprised groups. The aims of this Thesis are to; develop a mathe-

matical model for within–host co–infection of influenza A virus and pneumococcus,

model between–host pneumococcal pneumonia in order to determine the effect

of time delays due to latency and seeking medical care, and study the effect of

antibiotic resistance awareness and saturated treatment in the control of pneumo-

coccal pneumonia. Analysis of the stability of steady states of influenza A virus

and pneumococcal co–infection, pnemococcal pneumonia with time delays and

antibiotic resistance awareness is done. The graph theoretic method, combined

linear and quadratic Lyapunov functions, Goh–Voltera Lyapunov function are

used to get suitable Lyapunov functions for global stability of steady states. The

results show that the endemic equilibrium of pneumococcal pneumonia is locally

stable without delays and stable if the delays are under conditions. The results

suggest that as the respective delays exceed some critical value past the endemic

equilibrium, the system loses stability and yields Hopf–bifurcation. The results

of influenza A virus and pneumococcal co–infection show that, there exist a

biologically important steady state where the two pathogens of unequal strength

co–exist and replace each other in the epithelial cell population when the pathogen

fitness for each infection exceeds unity. The impact of influenza A virus onto

pneumococcus and vice–versa yields a bifurcation state. The results show that,

the presence of antibiotic resistance awareness and treatment during the spread

of pneumococcal pneumonia drastically reduces the basic reproduction number

R0 to less than unity, hence the disease could be eradicated.

xxi



CHAPTER 1

INTRODUCTION

1.1 Basic information about influenza A virus

Infectious diseases commonly known as communicable diseases, have always be-

sieged animals and humans. Pathogenic microorganisms, such as bacteria, viruses,

parasites or fungi spread diseases, directly or indirectly, from one person to an-

other. Examples of bacterial diseases include pneumococcal, Tuberculosis ; Viral

infections among others include influenza A virus and HIV/AIDS. Of the main

important pathogens affecting humans today are influenza A virus and pneumo-

coccus (Ackleh & Allen, 2003). Infectious diseases are significant and frequently

cause human illness that lead to mortality across the globe.

Influenza commonly known as ’flu’ is an infectious disease caused by a virus

that is categorized in four different types A,B, C and D (IAV, IBV, ICV and

IDV), but only influenza A and B viruses cause clinically significant human

disease and seasonal epidemics (Ferguson et al., 2015). Influenza is one of the

most studied viral infections, interactions and co–infections for respiratory viruses

in general (Boianelli et al., 2015). It causes yearly chronic epidemic outbreaks,

and individuals become infected several times over their lifetime (Beauchemin &

Handel, 2011). They are distinguished by differences in two major virus surface

proteins; HA and NA (Kamal et al., 2017). There are 16 diverse types of HA and 9

diverse types of NA. Thus there are potentially 144 diverse subtypes of influenza A

viruses (Shi et al., 2010). With these types, virus A is epidemiologically essential

for humans because it can recombine its genes with those of strains circulating in

animal populations (birds, swine and horses).
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Influenza is highly infectious, transmitted through contact with droplets from the

nose and throat of an infected person who is coughing and sneezing (Krishnapriya

et al., 2017). Influenza A is a short–lived infection with an incubation period

of approximately 2 days with viral shedding in respiratory secretions starting

approximately 1 day before the onset of symptoms (Carrat et al., 2008). The

typical pattern of virus kinetics is characterized by fast exponential growth, with

climax in viral load up to 1–3 days post infection, followed by a decline over the

subsequent 3–5 days (Chang & Young, 2007).

IAV has been observed to be a significant threat to public health, giving rise to

15–65 million infections and more than 200,000 hospitalizations each year during

seasonal epidemics in the United States (Smith & Smith, 2016). Influenza–related

acute lower respiratory infection is responsible for at least 28,000 to 111, 500

deaths in children less than 5 years old accounting for more than 90% of deaths

due to influenza in young children in developing countries (Nair et al., 2011). The

outbreaks reported as the Asiatic Flu (H2N8) (1889–1890), Spanish Flu (H1N1)

(1918–1920), Asian Flu (H2N2) (1957–1958), Hong Kong Flu(H3N2) (1968–1969)

and the swine Flu (H1N1) of (2009) revealed a high morbidity and mortality rate

Boianelli et al. (2015); Rynda-Apple et al. (2015); Pawelek et al. (2016) of whom,

over 50% of the people who died showed histologic and microbiologic evidence of

bacterial pneumonia (Joseph et al., 2013). The 1918–1919 epidemic was among

the deadliest public health crises in human history, killing approximately 675,000

people in the United States and about 50 to 100 million people worldwide (Cher-

tow & Memoli, 2013). In 2003, avian influenza A virus subtype (H5N1) caused

human deaths and massive poultry die–offs globally, including west and north

Africa (Katz et al., 2012; Radin et al., 2012). An outbreak of H7N9 bird influenza

occurred in China between February 2013 and May 2014, 400 infected human
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cases by this avian H7N9 virus were reported to have contracted the virus from

exposure to live poultry or potentially contaminated environments, especially

trading markets where live poultry was sold for food (Xing et al., 2017).

1.2 Basic information about pneumococcus

Pneumococcus is the classic example of a highly invasive, gram–positive, extracel-

lular bacterial pathogen that colonizes the upper respiratory tract, which includes

the nose, nasal cavity, pharynx, and larynx (Henriques-Normark & Tuomanen,

2013). Viruses that appear the nasopharynx of asymptomatic individuals can

facilitate both colonization of bacteria and promote viral presence (Bosch et

al., 2013). Pneumococci are different, with 90 recognized sero–types; several of

these serotypes are capable of causing invasive disease (Chertow & Memoli, 2013).

Pnemococcus cause the following types of illnesses depending on the affected

part of the body: IPD such as meningitis, bacteremia and bacteremic pneumo-

nia; lower respiratory tract infections (e.g., pneumonia), and upper respiratory

tract infections (e.g., otitis media and sinusitis) (Lamb et al., 2011; Bichara et

al., 2012). Pneumococcal infections may follow a viral infection, like a cold or

flu (influenza) (Mbabazi et al., 2018). The wide spread of the disease may be

promoted by potentially asymptomatic persons Sun et al. (2015); Li et al. (2016)

and an individual remains in the exposed class for a certain latent period prior to

becoming infective (Cooke & Van Den Driessche, 1996; Xu & Ma, 2010).

Pneumonia is the most common form of severe pneumococcal disease, accounting

for 15 % of all deaths of children under 5 years and killing an estimated 922,000

in 2015, and is the leading cause of death in this age group (Waheed et al., 2016).

Death due pneumonia is attributed to bacterial infections, mostly Streptococcus
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pneumonia (32.7%) and Haemophilus influenzae (15.7%), influenza viruses add

considerably, accounting for 7% of all severe pneumonia episodes and 10.9% of

pneumonia deaths (Mina & Klugman, 2014). According to Walker et al. (2013),

1.3 million (81%) of death are associated with pneumonia that occurs in the first

2 years of life. Worldwide, pneumococcal pneumonia disease continues to be a

major cause of morbidity and mortality in persons of all ages and the leading

cause of bacterial childhood disease, despite a century of study and the develop-

ment of antibiotics and vaccination (Domínguez et al., 2017). With an estimated

14.5 million episodes of serious pneumococcal disease occurring each year among

children under 5 years of age, resulting in approximately 500,000 deaths, most of

which occur in low and middle–income countries (O’Brien et al., 2009; Rodgers &

Klugman, 2016; Iroh Tam et al., 2018).

1.3 Co–infection of influenza A virus and pneu-

moccus

Influenza A virus and pneumococcus are pathogens that cause epidemics of re-

current infections driven by seasonality (Weinberger et al., 2014). Influenza A

virus and pneumococcus co–infections manifest in difficult–to–treat disease pro-

cesses that require extensive antimicrobial therapy and cause significant excess

mortality (Mina & Klugman, 2014). During influenza infection the resident AM

depletion takes place and this creates a position for secondary pneumococcus

infection by altering early cellular innate immunity in lungs, that results into

pneumococcal development and lethal pneumonia (Ghoneim et al., 2013). In

the process of co–infection by the same host, highly virulent viral strains play

the role of colonizers, because they kill cells faster and thus reproduce faster,

which allows faster spread and colonization of new cells (Ojosnegros et al., 2012).
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Competition in the host occurs when different pathogens selects for the fastest

replicating strain which could be more virulent (Ackleh & Allen, 2003; Bichara

et al., 2012). At population level an intermediate replication rate that maxi-

mizes transmission takes place (May & Anderson, 1983). Of the 317 pediatric

deaths that occurred in the United States from April, 2009 to January, 2010

showed, 28% evidence of bacterial co–infection, predominantly streptococcus

aureus and pneumococcus (Cox et al., 2011). The interaction of influenza and

bacterial respiratory pathogens and various clinical outcome is shown in Figure 1.1.

Control strategies have been instituted in an effort to fight the co–infection.

Vaccines against bacterial pathogens can reduce the co–infection element, but

their efficiency is limited to the vaccine serotypes (McCullers, 2011; Mina et al.,

2013; Metzger et al., 2015). Vaccines for influenza A virus and pneumococcus

are not effective because they do not include pandemic strains and offer little

protection against viruses with novel coat proteins (Cauley & Vella, 2015; Mc-

Cullers, 2006). Watanabe et al. (2012) and Belser et al. (2011) reported increasing

frequent infections due to new strains of avian influenza virus (including H5N1

and H7N9), stressing the possibility that another pandemic could arise. Emphasis

on development of new and effective vaccines that target drug–resistant strains

during secondary infection should be given priority (Chung & Huh, 2015).

Treatment with antimicrobial agents may also reduce infection progress and

eliminate secondary bacterial infection incidence (McCullers, 2004; Ghoneim et

al., 2013).

5



Figure 1.1: Pathophysiological interactions between influenza and bacterial respi-
ratory pathogens and various clinical expressions (Metersky et al., 2012).

6



1.4 Attempts to control pneumococcal pneumo-

nia

Pneumococcal pneumonia is preventable through vaccination, diagnostic testing,

environmental control measures, and appropriate treatment (Kizito & Tumwiine,

2018). Vaccination is a highly efficient means of preventing diseases and death

(Rémy et al., 2015). Decrease of IPD has been managed by PCV’s, and they are

among the many ongoing control interventions of vaccine successes around the

world. One dose of vaccine does not protect all receivers because vaccine–induced

immunity is lost after some period of time (Gjorgjieva et al., 2005; Samanta et al.,

2016).

Mass media plays a vital role in changing behavior related to public health

(Redman et al., 1990). Enhanced levels of awareness, for example: practice of

better hygiene, voluntary quarantine, application of preventive medicine or vacci-

nation and avoidance of places containing large numbers of people may reduce

the spread and contraction of the disease (Greenhalgh et al., 2015). The spread

of an infectious disease is reported by the media, such as television programs,

newspapers, radio or online social networks, whenever it outbreaks. Daily updates

and reports about infections and mortality have significant effects on the necessity

of control of an epidemic (Liu et al., 2016). Campaigns mainly focus on increasing

individual’s knowledge about disease transmission and control measures that

may reduce likelihood of being infected (Misra et al., 2011). Mathshidiso (2018)

described antibiotic resistance as a grave threat to future of global health as World

Health Organization joined the global community to observe the World antibiotic

awareness week from 12th–18th November 2018, with the overall theme ’Think

Twice’.
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Epidemiological data of influenza A virus–pneumococcal co–infection is major

challenge. Yet, modeling studies have been limited by the poor knowledge about

respiratory viruses and bacteria circulating in the community, especially because

little is known about prevalence, incidence, at risk populations, and even epidemic

profiles in different populations (Opatowski et al., 2018).

During co–infection of the same host highly virulent viral strains play the role of

colonizers, because they kill cells faster and thus reproduce faster, which allows

faster spread and colonization of new cells (Samuel et al., 2012). Concurrent

infection with multiple pathogens as for the case of influenza A and pneumococcal

greatly contribute to disease severity especially with supper–infections of the lung

and middle ear (Greenhalgh et al., 2015). Multiple infections cause intra–host

competition among strains and thus lead to an increase in the average level of

virulence above the maximal growth rate for a single pathogenic strain (Bosch et

al., 2013). Further, co–infections are believed to reduce treatment efficacy and

increase treatment costs (Griffiths et al., 2014).

Individuals continue to practice self medication Resti et al. (2009); Pajuelo et al.

(2018), which leads to delays in the administration of adequate antimicrobial treat-

ment, increase resistance to antibiotics that lead to increased hospital mortality

(Kollef et al., 1999).

1.5 Important definitions

Pathogen fitness: is the number of secondary infections generated during the

whole infectious period (Ciupe & Heffernan, 2017).
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Basic reproductive ratio number: is the number of new infections generated

in the lifetime of an infected individual when introduced into a completely suscep-

tible population (Ojosnegros et al., 2012).

Co–infection: A processes where either multiple parasite strains or species infect

a single host (May & Nowak, 1995).

Multi–parasite hosts: Single host species exploited by several concurrent para-

site species, either during their whole life cycle or during a given stage within it,

at both the individual and population levels (Rigaud et al., 2010).

Mathematical model: is a set of formulas and/or equations based on a quan-

titative explanation of real phenomena and formed in anticipation that the

behavior it predicts will be similar to the real behavior on which it is based.

Hopf–bifurcation: is a critical point where a system’s stability switches and a

periodic solution arises.

A differential equation: is an equation which involves an unknown function

f(x) and at least one of its derivatives.

A Lyapunov function: is a scalar function defined on the phase space, which

can be used to prove the stability of an equilibrium point.

A graph G = (V (G), E(G), G̃(.)) is a pair of sets V (G) and E(G) and an inci-

dence relation G̃(.) that maps pairs of elements of V (G) (not necessarily distinct)

to elements of E(G) (Kandel et al., 2007).

A directed graph, or digraph, G:, is a set of vertices V (G), a set of arcs A(G),

and a function which assigns each arc A an ordered pair of vertices (i, j) (Din et

al., 2016).

In–degree d−G(i) of vertex i: is the number of arcs (p, i), p ∈ V that terminate

at V .

Out–degree d+G(i) of vertex i: is the number of arcs (i, p), p ∈ V that start

at V (Shuai & Driessche, 2013).

Delay differential equations: At time t, evolution of the system depends on t,
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current state of the system and state of the system some time τi > 0 in the past

ẋ = f(x(t), x(t− τ1), x(t− τ2), . . . , x(t− τn)); where the quantities τi are positive

constants (Kuang, 1993).

1.6 Statement of the problem

Pathogens are everywhere, affect every feature imaginable in life of their hosts

including fitness. Influenza A virus and Pneumococcus cause viral pneumonia

and bacterial pneumonia respectively, these are silent killer diseases of children

under 5 years of age and the elderly whose immune system might be compromised.

The incidence is grave when an individual is co–infected by both diseases leading

to a viral–bacterial pneumonia. If an individual initially has a viral pneumonia,

delay in the latency stage increases the possibility of acquiring a viral–bacterial

pneumonia. Failure to take prescribed medicine on time and continuous practices

of self medication due to medicines disposal in pharmacies by infected individuals

escalates the cost of treatment and increase fatalities. Infected individuals delaying

to seek medical care expose individuals severe cases that may be hard to treat.

Antibiotic resistance and ineffective treatment of infections are a serious and

a growing problem. It is worse in developing where herbs are used to treat the

infections. Infected individuals usually relapse and become infected with new

resistant strains that are hard to treat and involve high costs.

Mathematical techniques can be used to study the ffects of co–and various control

interventions.Increase in antibiotics resistance lead to increased hospital mortality.
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1.7 Study Objectives

The research objectives are classified into general and specific objectives respec-

tively

1.7.1 General objective

To mathematically study the dynamics of both within–host influenza A virus and

pneumococcus co–infection, and between–host of pneumococcal pneumonia.

1.7.2 Specific objectives

The specific objectives of this study are:

(i) To develop a model of within–host co–infection of IAV and pneumococcus

(ii) To design a mathematical model for pneumococcal pneumonia that deter-

mines the effect of time delays due to latency and seeking medical care

(iii) To determine the effects of antibiotic resistance awareness and saturated

treatment in the control of pneumococcal pneumonia

(iv) To determine severity of IAV and pneumococcus co–infection to a host

1.8 Justification of the study

Over the years mathematical modeling has been extensively used to analyze

the dynamics of various infectious diseases for example; HIV, Malaria, cholera,

Tuberculosis, dengue fever, influenza, ebola, of recent zika fever and many others.
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Mathematical models are extremely important, they help in increasing the under-

standing of the dynamics of diseases and provide policy directions for interventions.

Interactions between pathogens in the host may cause considerable effects on both

host and parasite fitness through host vulnerability, infection length, infection

intensity, morbidity and mortality rates (Lakshmikantham et al., 1989).

Influenza A and pneumococcal are two infectious diseases of global concern

and are two of the many medical conditions responsible for pneumonia illness in

tropical and subtropical regions affecting children and the elderly that lead to

death if untreated. Understanding the within–host dynamics is paramount to

inform health workers on how best dual infections can be prevented and controlled.

1.9 Methodologies for model analysis

In this work, models of within–host of influenza A virus and pnueococcus, and

between–host pneumococcal pneumonia are analyzed using various techniques

described in the subsections that follow

1.9.1 Autonomous system

Let x to be the state of a dynamical system. A deterministic model that involves

x is given by:

ẋ = f(x, t, λ) (1.1)

with x ∈ Rn, t = time and λ = the parameters upon which the evolution of the

system depends.
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In this thesis models are represented by autonomous systems written in the form:

ẋ = f(x) (1.2)

with x = (x1, x2, . . . , xn) and ẋ = dx
dt

(point–wise time–derivatives of the state

variable x)

Description of a biological systems in a given dynamical system is given as; A

system of differential equations is a collection of n interrelated differential equations

of the form

ẋ1 = f1(t, x1, x2, x3, . . . , xn),

ẋ2 = f2(t, x1, x2, x3, . . . , xn),

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ẋn−1 = fn−1(t, x1, x2, x3, . . . , xn),

ẋn = fn(t, x1, x2, x3, . . . , xn). (1.3)

Where the functions fj are real–valued functions of the n+1 variables x1, x2, . . . , xn,

and t and assume that thefj are C∞ functions (M. W. Hirsch et al., 2012).

Therefore, the partial derivatives of all orders of the fj exist and are continuous.

1.9.2 Stability of steady states

Steady states (equilibrium points) of dynamical systems: A state x̄ is said to

be a steady state of the model if f(x̄) = 0. Mathematical models are becoming

more and more complicated when higher degree of nonlinearity is believed to

address real–world problems. Locating explicit solutions of these models is difficult.

Despite the fact that numerical simulations may provide good approximations

to solutions with fixed parameters, the general solution may remain unidentified.
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When a general solution is impossible to achieve, stability analysis may be an

option to get a logic solution of the dynamical system’s behavior. Actually, stability

analysis can forecast the long time behaviour of the dynamical system’s solution

accurately. Broadly, there are two types of stability analysis, local and global.

Local stability deals with behaviour of the dynamical system’s solution near a

steady state (equilibrium point), while global stability explains the dynamical

system’s solution behaviour in the entire region.

The Jacobian matrix of a dynamical system is given by:

J = Df(x) =



∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xn−1

∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
. . . ∂f2

∂xn−1

∂f2

∂xn

...
... . . .

...
...

∂fn−1

∂x1

∂fn−1

∂x2
. . . ∂fn−1

∂xn−1

∂fn−1

∂xn

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn−1

∂fn
∂xn



. (1.4)

1.9.3 Global stability of steady states (Equilibrium points)–Lyapunov

functions

Let the autonomous systems

x′ = f(x)

dxi
dt

= fi(x1, x2, . . . , xn), i = 1, 2, . . . , n,
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with steady state (E∗).

Suppose a continuously differentiable function is given by: V (x) = V (x1, x2, . . . , xn)

We define a total derivative

dV

dt
=
∂V

∂x1

dx1

dt
+
∂V

∂x2

dx2

dt
+ · · ·+ ∂V

∂xn

dxn
dt

(1.5)

Examples of Lyapunov functions include:

(i) The logarithmic Lyapunov function by Goh for Lotka–Voltera systems

L(x1, x2, . . . , xn) =
∑n

i=1 ci(xi − x∗i − x∗i ln xi
x∗i

).

(ii) Common quadratic Lyapunov function for nonlinear and linear functions

V (x1, x2, x3, . . . , xn) =
∑n

i=1
ci
2

(xi − x∗i )2.

(iii) Composite–Voltera function

W (x1, x2, ˙, xn) = c
(∑n

i=1(xi − x∗i )−
∑n

i=1 xi(ln
∑n
i=1(xi)∑n
i=1(xi)

)
)
.

1.10 Organization of the Thesis

This thesis is organized as follows:

In Chapter 1, the basic information about influenza A virus, pneumococcus,

co–infection of influenza A virus and pneumococcus, and attempts to control

pneumococcal pneumonia is given. The methods used in the study have also been

highlighted.

In Chapter 2, the mathematical framework of other scholars is presented. The

review includes; Within–host Co–infection for infectious diseases and mathemati-

cal models of infectious diseases, with time delays, antibiotic resistance awareness
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and treatment

Chapter 3 presents a nonlinear mathematical model for a within–host co–infection

of influenza A virus and pneumococcus.

In Chapter 4, a between–host model of pneumococcal pneumonia with time

delays is proposed and analyzed.

Chapter 5, presents a mathematical model of pneumococcal pneumonia for the

effect of antibiotic awareness and saturated treatment.

In Chapter 6, conclusions and recommendations are given. In the Appendices,

important equations, computations and codes that were used to arrive at the

results are given. In all models qualitative and numerical analysis are done.

To this end, the next chapter gives an overview of studies done by other re-

searchers that use mathematical techniques in modeling infectious diseases.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Mathematical modelling is one of the most useful tools to explore the inner

mechanism of disease outbreak and spread of infectious diseases, and has been

extensively used to study different types of epidemics, for example; human im-

munodeficiency virus (HIV) and tuberculosis, cholera, influenza A, hepatitis B

(Gakkhar & Chavda, 2012; Sun et al., 2017; Krishnapriya et al., 2017; Khan et

al., 2018). Deterministic models have a long history of being applied to the study

of infectious disease epidemiology (Roberts et al., 2015). This Chapter presents

the mathematical framework and literature/theoretical review. The theoretical

review covers the contribution of other scholars on within–host co–infection of

influenza A virus–pneumococcus and the dynamics of pneumococcal pneumonia.

2.2 Within–host Co–infection for infectious diseases

Within–host interaction can sustain co–existence of various parasite strains in a

population (Bosch et al., 2013; Mosquera & Adler, 1998). Within–host models are

dynamical models that represent and explain the interaction of the pathogen with

the host reproduction machinery or immune defenses within a single host individ-

ual (Martcheva et al., 2015), thus enhance our understanding of the mechanistic

interactions that govern acute infections with pathogens such as Influenza A virus

and pneumococcus (Ciupe & Heffernan, 2017). The within–host models can be

categorized into three groups: models that describe the pathogen reproduction

process within–host; models that describe the pathogen interaction with the
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immune responses; and models that include both the replication of the pathogen

and the immune responses.

Erwin (2017) investigated the mechanisms behind diseases and the immune re-

sponses required for successful disease resolution. Hadjichrysanthou et al. (2016),

formulated a simple within–host model of viral dynamics and investigated the

within–host dynamics of influenza A virus infection in humans. The Bedding-

ton–DeAngelis functional response in Beddington (1975) and DeAngelis et al.

(1975) is used to model the viral course with healthy target cells because rela-

tionship between virus and host cell is nonlinear. The Beddington–DeAnglis

functional response ( αx1x2

a+x1+bx2
), where a = a saturation constant, b = mutual

interference term, x1 and x2 represent species in the interaction and α=rate

constant describing infected cells in parasite–host interactions. Huang et al. (2009)

used Beddington–DeAngelis functional response in describing the infection rate

between HIV–1 virus and CD4–CT cells.

Cheng et al. (2017) used a probabilistic approach to derive a within–host dynamic

model of co–infection with influenza A virus and SP integrated with dose–response

and found out that the day of secondary SP infection had much more impact

on the severity of inflammatory responses in pneumonia compared to the effects

caused by initial virus titers and bacteria loads.

A study by Shrestha et al. (2013), explored an immune–mediated model of

the viral–bacterial interaction that quantifies the timing and the intensity of

the interaction. Results predicted that with pneumococcal bacteria introduced,

following influenza infection during a 4–6 day window yields invasive pneumonia at

significantly lower innoculum size than in hosts not infected with influenza. Other

studies done on within–host influenza A virus and pneumococcus co–infection
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include: Smith (2017); Smith & Smith (2016) and demonstrate a practical under-

standing of the dynamics for influenza A virus and pneumococcal co–infection in

animals. At population level co–infection models of Hussaini et al. (2016); Lawi et

al. (2013); Nthiiri et al. (2015), provide an understanding of important biological

parameters responsible in disease development.

Smith et al. (2013) described the co–dynamics of viral–bacterial infection. How-

ever, the model system doesn’t include the model equation of co–infected cells,

yet it is an important subsystem that helps in showing which pathogen survives

during the interaction of the two pathogens.

2.3 Mathematical models of infectious diseases,

with time delays, antibiotic resistance aware-

ness and treatment

During treatment of pneumonia, microorganisms occasionally persevere, emerge

or re–merge despite of good clinical responses. Thus, recovered individuals may

relapse and return to the infective class (Kiem & Schentag, 2013). The recurrence

of disease is a significant feature of some animal and human diseases; for example,

malaria, herpes, tuberculosis in both humans and animals (Van Den Driessche et

al., 2007). Patients with HIV/AIDS commonly have a recurrence of pneumococcal

bacteremia due to pre–existing drug resistance (Zuo & Liu, 2014; Agaba et al.,

2017). Pneumococcal pneumonia patients infected with chronic diseases such as

HIV/AIDS, are more likely to relapse compared to individuals without chronic

diseases (Campo et al., 2005).
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In events of acute side effects, patients tend to discard their treatment, only

to return to the hospital with persistent infections of a more virulent and resistant

strain of the bacteria (Okeke et al., 1999). To control antibiotic resistance, vaccines

have been proposed as an essential intervention, complementing improvements in

antibiotic stewardship and drug pipelines (Atkins et al., 2017). Disease appropri-

ate awareness in a population can control an infection efficiently (Levy et al., 2017).

Time delays are significant in the transmission process of epidemics and arise due

to delayed feedback especially the period for waning vaccine–induced immunity,

latent period of infection, the infectious period and the immunity period (Rao &

Kumar, 2015). Among the mathematical tools currently used, delay differential

models with time delay have attracted attention in the field of science especially

modeling infectious diseases. Delays change the dynamical systems’ stability by

giving rise to Hopf–bifurcations (Zhao & Zhao, 2017).

Rao & Kumar (2015) proposed a model for infectious diseases spread having

susceptible, infected and recovered populations, and observed that incubation

delays have influence on the system even under enhanced vaccination. Zhao &

Zhao (2017), proposed an SIR epidemic model incorporating media coverage with

time delay, and the results showed that the time delay in media coverage affects

the stability of the endemic equilibrium and produces limit cycle oscillations when

the basic reproduction number is greater than unity. Zhao et al. (2014), proposed

an SIRS epidemic model by incorporating media coverage with time delay, the

results showed that time delay in media coverage could affect the endemic equi-

librium giving rise to a family of periodic orbits bifurcating from the endemic

equilibrium when the time delay increases through a critical value. Misra et al.

(2012) used a mathematical model for the control of cholera epidemic, to show

that the disease may be controlled by spraying insecticides but a longer delay in
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spraying insecticides may destabilize the system.

An SIS model that divides the susceptible class into two subclasses: aware suscep-

tible and unaware susceptible due to individuals’ behavioral changes because of

media coverage influence was used to investigate the effect of awareness coverage

and delay in controlling infectious diseases (Al Basir et al., 2018). The results

showed that the disease–free equilibrium is stable if the basic reproduction number

is smaller than unity and the endemic equilibrium exhibits Hopf–bifurcation, in

both delayed and non-delayed system, whenever it exists.

A research by Al Basir (2018), on the dynamics of infectious diseases with media

coverage and two time delays; one for the time lag in reporting number of infected

individuals and another for the delay between the awareness campaign and the

time of taking measures by susceptible individual. The author noted that if the

number of campaigns due to the awareness program is increased then the disease

transmission amongst the susceptible population declines. However, if both delays

increase, the system shows limit cycle oscillations, which pose a challenge to

control the epidemic. Lu et al. (2017), conducted a study about the impact of

media coverage on spread and control of infectious diseases using an SEI model,

including individuals’ behavior changes in their contacts due to the influences of

media coverage. The results showed that, the media coverage may decrease the

peak value of the infectives’ or the average number of the infectives in various cases.

The above studies have considered mathematical models of infectious diseases in

an attempt to suggest strategies that can reduce the disease incidence in human

populations. Nonlinear ODE’s and DDE’s are considered. The total population

is subdivided into susceptible, infective, vaccinated, carrier, treated and recov-

ered. However, none of them has done a study about within–host model for the
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co–infection of IAV and pneumococcus that has a subpopulation of co–infected

cells and a Beddington DeAngelis functional response (infection rate). To the

best of our knowledge no study has undertaken the dynamics of pneumococcal

pneumonia with time delays in the latency and infective subpopulations. Further,

no study has been conducted about pneumococcal pneumonia with subdivided

susceptible and infective subpopulations, with antibiotic resistance awareness and

saturated treatment. This is why we are motivated to undertake this study to

bridge the existing gap.

In the next Chapter, a within–host co–infection of IAV and pneumococcus model

is constructed, analytically and numerically analyzed, with an aim of finding out

the most virulent pathogen.

22



CHAPTER 3

WITHIN–HOST CO–INFECTION

MODEL OF INFLUENZA A VIRUS

AND PNEUMOCOCCUS

3.1 Introduction

Co–infection typically means two or more pathogens infecting the human (or

animal) host, but nature is full of surprises and one clinically important type of

co–infection turns out to involve viral infection of the principal pathogen (McArdle

et al., 2018). Humans and animals are continuously exposed to multiple potential

pathogens. Most people are chronically or latently infected (be it with virus,

bacteria, fungi), and usually carry possible pathogens in their colonizing microbial

flora (Pradeu, 2016). This implies that almost every new occurring infection,

probably constitutes sort of a co–infection. A frequent problem of respiratory

viral disease can be secondary bacterial infection. Bacterial co/secondary bacterial

infection, as the name suggests, is a bacterial infection that occurs during or after

an infection from another pathogen, commonly viruses (Morris et al., 2017).

3.2 Description, formulation and basic qualita-

tive properties of the model

We formulate a within–host co–infection of influenza A virus and pneumococcus

model. The epithelial cell population at time t, represented by N , is sub–divided

into four mutually compartments consisting of uninfected cells (S), infected cells
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with influenza A virus, (Iv) infected cells with pneumococcus (Ib), co–infected cells

(Ivb). The pathogen population is sub–divided into two subclasses: pneumococcus

(B) and influenza A virus (V ). Uninfected cells S are recruited from the pool of

precursor cells at a constant rate Λ and have a natural death rate µs. The infection

rate by influenza A virus is the Beddington–DeAngelis functional response, and

infection rate by pneumococcus is βbB per cell. The infected cells with influenza A

virus, have increased death rate µv. The infected epithelial cells with pnemococcus

(Ib), have a contact between pneumococcus and uninfected epithelial cells that

occurs at a rate proportional to both their incidences and have increased death

rate µb. The co–infected epithelial cells (Ivb), have increased death rate µvb.

Pneumococcus proliferate logistically at a maximum rate r, with a tissue car-

rying capacity K.‘The growth rate approaches zero when the bacterial culture

approaches the value of the capacity B = K’. Pneumococcus have increased

bacterial loss due to increased toxic death δb, and infection resulting from the

interaction of uninfected epithelial cells with influenza A virus αv. The pneumo-

coccus is decreased at a ratio–dependency term mA
A+hB

, where m is the maximum

number of bacteria an Alveolar macrophage can catch in a unit time t, and h is a

handling time for the alveolar macrophage.

Influenza A virus (V ) are maintained by both the production of influenza A

virus infected epithelial cells, τvnv from Iv lysis of infected epithelial cells, τvbnvb

from Ivb lysis of co–infected cells. Influenza A virus have increased viral loss

due to toxic death (δv) and infection resulting from the interaction of uninfected

epithelial cells with pneumococcus αb. The infected epithelial cells release nv, nb

and nvb virions during their life time.

The mathematical model in this study, adopts a nonlinear incidence of the Bedding-
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ton–DeAngelis functional response, where the contact rate depends on saturation

and mutual interference factors and mass–action incidence. The Beddington

DeAngelis response term adopted in this model is of the form βvSV
1+aS+bV

, where b

is a measure of inhibition effect due to treatment like oseltamivir neuraminidase

by infected individuals and a is a measure of inhibition effect, such as preventive

health care taken by susceptible individuals for disease prevention, as opposed to

disease treatment, the Beddington DeAngelis response term can be used to derive

other important response terms by setting some parameters to zero for example;

(i) Setting a = b = 0, yields f(S, V ) = βvSV , commonly known as a standard

bilinear form (Zhonghua & Yaohong, 2010).

(ii) Setting b = 0, gives f(S, V ) = βvSV
1+aS

, described as the saturated incidence

rate with respect to the susceptible individuals. The inhibition effect due to

the saturation factor arises because of the preventive health care precautions

to control the spread of the epidemic (Korobeinikov & Maini, 2005).

(iii) Setting a = 0, then f(S, V ) = βvSV
1+bV

, known as saturated incidence rate

with respect to the infected individuals (Xu et al., 2015). Under such

circumstances, the contact between infective and susceptible individuals may

saturate at high infection level due to congestion of infective individuals or

due to protection given to susceptible individuals (Laarabi et al., 2012).

3.3 Model assumptions

The following assumptions are stated to guide in the development of model

equations:

(i) The interaction within–host is between IAV and pneumococcus pathogens

and the target cells
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(ii) A typical viral/bacteria pathogen replicates within the machinery of host

cells called the target cells

(iii) The infection in a given population is spread only by free pathogens: IAV

and pneumococcus bacteria

(iv) The bacteria population (B) have a logistic growth because there are limits

to growth in all known biological systems.

(v) The pneumococcus population is phagocytosed by alveolar macrophages

(vi) Co–infection in the epithelial cell population is due to IAV and pneumococ-

cus.

Within–host model deals with interaction of cell and pathogen populations, there-

fore, the associated state variables and parameters are positive. The related state

variables and parameters of the model are given in the Nomenclature, and the

transition diagram for the model is given in Figure 3.1.
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Figure 3.1: A schematic diagram for model (3.1). The dotted lines indicate
cell–pathogen interaction and solid lines with arrows not starting from the com-
partments show the release of pathogens from infected cells. The solid lines with
arrows show transfer from one compartment to another.

where f(S, V ) = βvSV
1+aS+bV

is the Beddington–DeAngelis functional response

and f(B
A

) = mA
A+hB

is the ratio–dependency term.

From Figure 3.1 we get a system of nonlinear differential equations by the balance

law of compartments stated as: rate of change=inflow transition rate−outflow

transition rate that is: Ẋ = sum of inflow transition rates− sum of outflow

transition rates, hence we have

Ṡ = Λ− βvSV

1 + aS + bV
− βbSB − µsS,

İv =
βvSV

1 + aS + bV
− (β∗bB + µv)Iv,

İb = βbSB − (µb + β∗vV )Ib, (3.1)

İvb = β∗vIbV + β∗b IvB − µvbIvb,

Ḃ = rB

(
1− B

K

)
+ τbnbIb −

γamAB

A+ hB
− (αv + δb)B,

V̇ = τvnvIv + τvbnvbIvb − (αb + δv)V.
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with initial conditions S(0) = S0 ≥ 0, Iv(0) = Iv0 ≥ 0, Ib(0) = Ib0 ≥ 0,

Ivb(0) = Ivb0 ≥ 0, B(0) = B0 ≥ 0, V (0) = V0 ≥ 0.

The model was built on the previous work of Smith (2017), by incorporating

important epidemiological and biological features of each infection. The major

inputs are: the sub–population compartment for influenza A virus and pneu-

mococcus co–infection, a Beddington–DeAngelis nonlinear incidence term, the

ratio–dependent term because bacteria grow rapidly for initial doses that would

be rapidly cleared in the absence of virus, the recruitment of healthy epithelial

cells, toxic death rates to each class and number of infectious particles released

from lysis of infected cells.

3.4 Basic qualitative properties

3.4.1 Positivity of solution trajectories of model (3.1)

In this Section, the existence of non–negative solutions for all time 0 < t < ∞

is shown by contradiction. Given that values of the state variables the are

non–negative, that is

S(0) ≥ 0, Iv(0) ≥ 0, Ib(0) ≥ 0, Ivb(0) ≥ 0, V (0) ≥ 0, B(0) ≥ 0,

the variables remain so ∀t > 0. That is S(t) ≥ 0, Iv(t) ≥ 0, Ib(t) ≥ 0, Ivb(t) ≥ 0,

V (t) ≥ 0, B(t) ≥ 0.

Suppose, the following possibility at a given time hold:

(i) t1 is such that S(t1)=0 and Ṡ(t1) < 0 whenever; Iv(t) > 0, Ib(t) > 0,

Ivb(t) > 0, B(t) > 0 and V (t) > 0 for 0 < t < t1.
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From possibility (i) and model (3.1) we obtain

˙S(t1) = Λ− βvS(t1)V (t1)
1+aS(t1)+bV (t1)

− βbS(t1)B(t1)− µsS(t1).

Then

Ṡ(t1) = Λ > 0. (3.2)

Equation (3.2) is a contradiction of assumption (i) that is

S(t1) = 0 and Ṡ(t1) < 0.

In other words, there exists no such ”t1”. Hence it follows that for t; 0 < t < t1

we have S(t) > 0. We can extend this t1 to ∞. Similarly, it can be shown that

the variables Iv; Ib; Ivb;B and V remain positive for all t > 0. This approach was

also used by e.g Magombedze et al. (2010) and references therein.

3.4.2 Boundedness of the solutions

Since model (3.1) describes host cell–pathogen interaction, it is essential to show

that our solutions are bounded in the proper subset Ω ⊂ R4 × R2. The overall

epithelial cell population size at time t is N given by N = S + Iv + Ib + Ivb and

the overall pathogen population at time t is P = B + V .

Proposition 3.3.1. The solution of model (3.1) is ultimately bounded in Ω ⊂

R4 × R2.

Proof. From the first equation of model (3.1), we have Ṡ ≤ Λ−µsS. This implies

lim supt→∞ S ≤ Λ
µs
. Since N = S + Iv + Ib + Ivb, then

Ṅ ≤ Λ− δ1N,
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where δ1 = min{µs, µv, µb, µvb}. Hence, lim supt→∞N ≤ Λ
δ1
. It follows that

lim supt→∞ Iv ≤ l1, lim supt→∞ Ib ≤ l1 and lim supt→∞ Ivb ≤ l1, where l1 = Λ
δ1
.

Therefore, the global attractor of the epithelial cell population is contained in Ωc

On the other hand,

Ṗ ≤ φl1 − δ2P,

where φ = τbnb + τvnv + τvbnvb and δ2 = min{(αb + δv), (αv + δb)}. Hence,

lim supt→∞ P ≤
(τbnb+τvnv+τvbnvb)l1

δ2
. It follows that lim supt→∞B ≤ l2, lim supt→∞ V ≤

l2, where l2 = (τbnb+τvnv+τvbnvb)l1
δ2

. Thus, the global attractor of the pathogen popu-

lation is contained in Ωp. Hence the feasible solution set of model (3.1) remain

in the region Ω = Ωc ∪ Ωp where {Ωc = (S, Iv, Ib, Ivb) ∈ R4
+ : N ≤ Λ

δ1
and

Ωp = {(B, V ) ∈ R2
+ : P ≤ φ

δ2
}.

Therefore, no epithelial cell and pathogen populations becomes negative or

grows without bound. Thus, model (3.1) is epidemiologically and mathematically

well–posed and its dynamics can be considered in a proper subset Ω (Hethcote,

2000).

3.5 Well–possedness of influenza A virus sub–model

The influenza A virus steady state (E1) occurs when populations for Ib = Ivb =

B = 0, thus E1 = (S0, I
∗
v , 0, 0, 0, V

∗). From the full system (3.1) we get
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Ṡ = Λ− βvSV

1 + aS + bV
− µsS,

İv =
βvSV

1 + aS + bV
− µvIv, (3.3)

V̇ = τvnvIv − (αb + δv)V.

System (3.3) illustrates the dynamics of influenza A virus with the epithelial cell

population and therefore, it can be shown that the related state variables are

non–negative for all time t ≥ 0 and that all solutions of the system (3.3) with

positive initial data remains positive for all time t ≥ 0. By assuming the related

parameters as non–negative for all time t ≥ 0. We show that all feasible solutions

are uniformly bounded in a proper subset Φ.

Proposition 3.4.1. Solutions of the system (3.3)are contained in the region Φ

Proof. Suppose all feasible solutions are uniformly–bounded in a proper subset

Φ, let (S(t), Iv(t), V (t)) ∈ R3
+ be any solution with non–negative initial con-

ditions. Using the differential inequality Cheng et al. (2017), it follows that;

lim supt→∞ S(t) ≤ Λ
µs
.

Given N(t) = S(t) + Iv(t) + V (t) and taking its time derivative along the solution

path of system (3.3), we obtain

N(t)

dt
= Λ + τvnvIv − µvIv − µsS − (αb + δv)V. (3.4)

Let φ∗ = Λ + τvnvIv and δ0 = min(µs, µv, (αb + δv)), such that N(t)
dt
≤ φ∗− δ0N(t).

Hence, from the differential inequality it follows that

0 ≤ N(t) ≤ φ∗

δ0
+ k0e

−δ0t, where k0 is a constant of integration, thus 0 ≤ N(t) ≤
φ∗

δ0
(1 + k1e

−δ0t) ≤ φ∗(1+k1)
δ0

,∀t > 0, with k1 = k0δ0
φ∗
.

This indicates that as t→∞, we have 0 ≤ N(t) ≤ φ∗(1+k1)
δ0

.

Therefore, N(t) is bounded and all the feasible solutions of influenza A virus
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sub–model starting in the region Φ approach, enter or stay in the region, where

Φ = (S(t), Iv(t), V (t)) : N(t) ≤ φ
δ0
.

Therefore, Φ is positively invariant under the flow induced by system (3.3). Hence,

existence, uniqueness and results that follow also hold for system (3.3) in Φ.

Thus, system (3.3) is mathematically and epidemiologically well–posed and it is

necessary to consider its solutions in Φ.

3.5.1 Computation for influenza A viral fitness (R1
0)

The pathogen fitness is derived as a spectral radius of (FV −1) where F are the

new uprising infections in the infectious compartment. V is the outgoing infections

from the infectious compartment. Using the next generation operator method

Van Den Driessche & Watmough (2002) on system (3.3), let fi(xi) = f − v, where

f = [fij] and xi = Iv, f is a group of new infections and v = [vij] (the outgoing

infections from the infectious compartments).

Let

F =

[
∂fi(xi)

∂xi

∣∣∣
xi=E1

]
, V =

[
∂fi(xi)

∂xi

∣∣∣
xi=E1

]
.

Thus, the pathogen fitness, R0 = ρ(FV −1) evaluated at infection free state

f =


βvSV

1+aS+bV

0

 .
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By linearization approach, the associated matrix at infection–free steady state is

given by

F =


0 βvΛ

µs+aΛ

0 0

 .

Suppose the outgoing infections from the infectious compartments are given by

v =


µvIv

(αb + δv)V − τvnvIv

 .

Again by linearization we obtain

V =


µv 0

−τvnv αb + δv

 .

Therefore the inverse of the outgoing infections from the infectious compartments

is given by

V −1 =


1
µv

0

τvnv
µv(αb+δv)

1
αb+δv

 .
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Therefore:

F × V −1 =


τvnvβvΛ

µsµv(αb+δv)
βvΛ

µs(αb+δv)

0 0

 . (3.5)

By finding the eigenvalues of expression (3.20) we get

λ1 = 0, λ2 =
βvΛτvnv

(µs + aΛ)µv(αb + δv)
.

then

R1
0 = max(λ1, λ2) =

βvΛτvnv
(µs + aΛ)µv(αb + δv)

. (3.6)

For a steady state to be locally asymptotically stable, all the roots of the charac-

teristic polynomial must be located in C− = {z ∈ C : Re(z) < 0}.

3.5.2 Stability analysis of influenza A virus steady state

A dynamical system (3.3) with free infection state (E1) is said to be stable if all

real parts of the eigenvalues computed from the Jacobian matrix of the system

are less than zero and unstable otherwise.

Theorem 3.5.1 If R1
0 < 1, the Infection–free steady state for system (3.3) (E1)

is locally asymptotically stable and E1 is unstable if R1
0 > 1
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Proof. Linearizing system (3.3) to generate the Jacobian

JE0 =



−µs 0 − βvΛ
µs+aΛ

0 −µv βvΛ
µs+aΛ

0 τvnv −(αb + δv)


. (3.7)

Evaluating the determinant of the Jacobian JE1 yields a characteristic expression

P (λ) = λ3 + w2λ
2 + w1λ+ w0. (3.8)

with w2 = ((αb + δv) + µv + µs), w1 = ((αb + δv)(µv + µs) + µvµs − τvnvβvΛ
µs+aΛ

),

w0 = −µs(βvΛτvnv
µs+aΛ

+ (αb + δv)µv).

We solve for the eigenvalues by equating the characteristic polynomial (3.8) to

zero to obtain

λ1 = −µs, λ2,3 =
−µv

2
− (αb + δv)

2

±

√
(µ2

v − 2µv(αv + δv) + (αb + δv)
2 + 4βvΛτvnv

µs+aΛ
)

2
, (3.9)

Clearly λ1 is negative, however λ2 and λ3 take up two signs hence by finding

appropriate combinations of the two eigenvalues we get

λ2 + λ3 = −(µv + (αb + δv)) < 0,

λ2 × λ3 = (
µv
2

+
αb + δv

2
)2 − 1

4
(µ2

v − 2µv(αb + δv) + (αb + δv)
2 +

4βvΛτvnv
µs + aΛ

)(3.10)
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Expanding and simplifying expression (3.10) we obtain

λ2 × λ3 = µv(αb + δv)−
βvΛτvnv
µs + aΛ

Lemma 3.5.1. λ2 × λ3 < 0, if µv(αb + δv) < βvΛτvnv

µs+aΛ

By dividing throughout system by µv(αb + δv)

we obtain 1 < βvΛτvnv
(µs+aΛ)µv(αb+δv)

.

Let R1
0 = βvΛτvnv

(µs+aΛ)µv(αb+δv)
,

be the viral fitness for influenza A virus, then R1
0 > 1.

Lemma 3.5.2. suppose λ2 × λ3 > 0, then this will happen if

µv(αb + δv) >
βvΛτvnv
µs+aΛ

.

Dividing by µv(αb + δv), on both sides we obtain

βvΛτvnv
(µs + aΛ)µv(αb + δv)

< 1,

hence R1
0 < 1. Therefore E1 is locally asymptotically stable whenever R1

0 < 1 and

unstable for R1
0 > 1. This ends the proof of the Theorem 3.5.1.

3.5.3 Global stability of the influenza A virus free steady

states

Theorem 3.5.2.When R1
0 < 1, the infection steady state for influenza A virus,

is globally asymptotically stable in region Φ

Proof. In order for us to show that influenza A virus free–steady state is glob-

ally stable inside region (Φ), we apply the method of fluctuation employed in

(W. M. Hirsch et al., 1985; Jiang et al., 2009). Suppose g∞ = limt→∞ g(t) and

g∞ = lim supt→∞ g(t) for any continuous and bounded function g : [0,∞)→ R.
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We have already shown that the solutions of S(t), Iv(t) and V (t) are always

non–negative and bounded from above for any given well–posed conditions. There-

fore, lim inft→∞ and lim supt→∞ always exist for each individual state. Theorems

of fluctuations in Thieme (2003) are re–stated:

If there exists sequences tn and sn such that if tn →∞ whenever n→∞, then

lim
n→∞

X(tn) = X∞, lim
n→∞

Ẋ(tn) = 0,

lim
n→∞

X(sn) = X∞, lim
n→∞

Ẋ(sn) = 0 (3.11)

Suppose t = tn, equation (1) of system (3.3) becomes

Ṡ +
βvS(tn)V (tn)

1 + aS(tn)
+ µsS(tn) = Λ. (3.12)

We note that as n→∞ and applying (3.11), expression (3.12) reduces to

βvS
∞V∞

1 + aS∞ + µsS∞
+ µsS

∞ = Λ.

This implies that

µsS
∞ ≤ βvS

∞V∞
1 + aS∞ + bV∞

+ µsS
∞ ≤ Λ. (3.13)

Considering equation (2) of system (3.3), we obtain

İv(tn)− βvS(tn)V (tn)

1 + aS(tn) + bV (tn)
= −µvIv(tn)

we note that as n→∞ we get

µvI
∞
v ≤

βvS
∞V∞

1 + aS∞ + bV∞
(3.14)
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Thus, from equation (3.14) we have

I∞v ≤
βvS

∞V∞
µv(1 + aS∞ + bV∞)

. (3.15)

From equation (3) of system (3.3), let t = tn, then we get

V̇ (tn) + (αb + δv)V (tn) ≤ τvn1Iv(tn)

as n→∞ we apply identities in equation (3.11) to obtain

(αb + δv)V
∞ ≤ τvn1I

∞
v . (3.16)

From equation (3.16), we obtain V ∞ and make a substitution of I∞ from equa-

tion (3.15) to have

V ∞ ≤ τvnvβvS
∞V∞

µv(αb + δv)(1 + aS∞ + bV∞)
(3.17)

Dividing equation (3.17) through by V∞ we obtain

1 ≤ τvnvβvS
∞

µv(αb + δv)(1 + aS∞ + bV∞)

. (3.18)

From equation (3.13), if no pathogen to cause infection in the longrun i.e. V∞ = 0.

Then S∞ → Λ
µs

for b = 0 and equation (3.18) is given as 1 ≤ βvτvnvΛ
µv(αb+δv)(µs+aΛ)

.

We note that R1
0 = βvτvnvΛ

µv(αb+δv)(µs+aΛ)
hence equation (3.18) becomes

1 ≤ R1
0, which contradicts "R1

0", and this implies that if S∞ = 0, then from

equations (3.16) and (3.18) we have I∞v = 0 and V ∞ = 0

Therefore, since the solutions to system (3.3) are non–negative and lim inf ≤

lim sup, we must have S(t), Iv(t), V(t)→ 0 as t→∞ because S(t)→ 0 asymptot-

ically in equation (3) of system (3.3), that is Ṡ = Λ− µsS. This result is related
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to that of Castillo-Chavez & Thieme (1994), the solution S(t)→ Λ
µs

as t→∞

Hence, we observe that the local stability established earlier and the global

attractive property herein, the proof of the Theorem 3.5.2 is complete!

3.5.4 Existence of Influenza A virus endemic state

The endemic state is a state for which the infection can spread in the epithelial

cell population. The existence of the endemic state for influenza A virus which

keep alive the infection propagating is now discussed.

Theorem 3.5.3.The influenza A virus only model has a unique endemic equilib-

rium if and only if R1
0 > 1.

Proof. Equating the R.H.S of system (3.3) to zero, we get

Λ− βvS
∗V ∗

1 + aS∗ + bV ∗
− µsS∗ = 0,

βvS
∗V ∗

1 + aS∗ + bV ∗
− µvI∗v = 0,

τvnvI
∗
v − (αb + δv)V

∗ = 0. (3.19)

Simultaneously solving a system of equation (3.19), we get

S∗ =
Λbτvnv + µv(αb + δv)

τvnv(βv + µsb)− µv(αb + δv)a
. (3.20)

Dividing the R.H.S of equation (3.20) by µv(αb + δv) we obtain

S∗ =

bR1
0(µs+aΛ)

βv
+ 1

R1
0(µs+aΛ)

βvΛ
+ a

. (3.21)
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From the expression of S∗ we observe two arising situations to be considered for

functional response

S∗ =
1

R1
0(µs+Λa

βvΛ
) + a

. (3.22)

Case I: Saturation functional response, when a = 0 and b > 0

It implies that, a less than linear response in V could occur when concentration

of influenza A viruses increase, and yet the infectious proportion is high enough

so that exposure is likely to happen (Castillo-Chavez et al., 2002).

Hence, S∗ = bΛ + βvΛ
R1

0µs
= Λ(b+ βv

R1
0µs

).

Case II: Holling type II functional response, when b = 0 and a > 0

We consider

I∗v =
µv(αb + δv)(µs + aΛ)− βvτvnvΛ
µv(µv(αb + δv))a− τvnv(βv + µsb)

. (3.23)

Dividing the R.H.S of equation (3.23) by µv(µs + aΛ)(αb + δv), we obtain

I∗v =
1−R1

0

µva
µs+aΛ

−
R1

0µv(βv+µsb)

βvΛ

.

Therefore, we consider

(i) a = 0 and b > 0 such that I∗v =
(1−R1

0)βvΛ

−R1
0µv(βv+µsb)

= βvΛ
µv(βv+µsb)

(
1− 1

R1
0

)
.

(ii) b = 0 and a > 0 such that I∗v =
1−R1

0

µva
µs+aΛ

−
R1

0µvβv

βvΛ

.

This implies that

I∗v =
Λ(1−R1

0)

µv(
aΛ

µs+aΛ
)−R1

0

. (3.24)
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whenever, R1
0 > µv(

aΛ
µs+aΛ

) holds.

We consider a state for

V ∗ =
τvn1(aµv(αb + δv))(µs + aΛ)− βvτvnvΛ

µv(αb + δv)(µv(αb + δv)a− τvnv(βv + µsb))
. (3.25)

Dividing the R.H.S of equation (3.25) by µv(αb + δv)(µs + aΛ)a, we get

V ∗ =
τvn1

µv(αb + δv)

(
1− βvτvnvΛ

µv(αb+δv))(µs+aΛ)a

1
µs+aΛ

− τvnv(βv+µsb)
µv(αb+δv)(µs+aΛ)a

)
,

which simplifies to

V ∗ = R1
0

(
a−R1

0
βvΛa
µs+aΛ

−R1
0

)
. (3.26)

We observe that when a = 0, b > 0 exist a saturation functional response, V ∗ = R1
0

Finally, from equations (3.21), (3.24) and (3.26), the endemic steady state in the

presence of both saturated functional responses and Holling type II functional

response is given as

E∗1 =

 bR1
0(µs+aΛ)

βv
+ 1

R1
0(µs+aΛ)

βvΛ
+ a

,
1−R1

0

µva
µs+aΛ

− R1
0µv(βv+µsb)

βvΛ

, R1
0(

a−R1
0

βvΛa
µs+aΛ

−R1
0

)

 . (3.27)

However, the endemic steady state (3.27) can be expressed in terms of no satu-

ration functional response in the presence of Holling type II functional response

and vice–versa as below. The endemic steady state for influenza A virus (E∗1)

in the absence of saturation functional response when Holling type II functional

response is positive is given as

E∗1 = (S∗, I∗v , V
∗) =

(
Λ(b+

βv
R1

0µs
),

βvΛ

µv(βv + µsb)

(
1− 1

R1
0

)
, R1

0

)
, (3.28)
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and the endemic state for influenza A virus when the saturation function response

is present,

E∗2 = (S∗, I∗v , V
∗) =

(
1

R1
0(µs+Λa

βvΛ
) + a

,
Λ(1−R1

0)

µv(
aΛ

µs+aΛ
)−R1

0

, 0

)
. (3.29)

Linearizing system (3.3) near the equilibrium E∗2 and using the Routh–Hurwitz

criterion, we obtain the following conditions for local asymptotic stability of this

steady state

JE∗
2

=



−βvV ∗ − µs 0 −βvS∗

βvV
∗ −µv βvS

∗

0 τvnv −(αb + δv).


The characteristic equation of the Jacobian matrix of the linearized system

evaluated at this point E∗2 is

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0, (3.30)

where

a1 = (αb+δv)+µv +µs+βvV
∗, a2 = µv(αb−τvnvβvS∗+δv)+((αb+δv)+µv)(µs+

βvV
∗), a2 > 0, a3 = τvnvβ

2
vV
∗S∗ + ((αb + δv)(µv)− τvnvβvS∗)(βvV ∗ + µs),

provided µv(αb + δv) > τvnvβvS
∗, µv(αb + δv) > τvnvβvS

∗,

which means that, the overall death rate of infected epithelial cells is greater than

the total number of new virions generated from the interaction with the uninfected

epithelial cells.
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The local stability of the endemic steady state in equation (3.28), can’t be easily

identified. Instead we use Routh–Hurwitz criterion to analyze it’s local stability.

The criterion states that the corresponding steady state is locally asymptotically

stable if and only if all Hurwitz determinants of the characteristic polynomial are

positive (Hinrichsen & Pritchard, 2005). We define the three Hurwitz matrices

using the coefficients a1, a2, a3, of polynomial (3.29).

H1 =


a1

 , H2 =


a1 1

0 a2

 , H3 =



a1 1 0

a3 a2 a1

0 0 a3


Since n = 3, we compute the det(H3) = a1a2 − a3, the eigenvalues of the matrix

have negative real parts if and only if the inequalities for a1 > 0, a3 > 0 and

a1a2 > a3 hold, for the coefficients of the characteristic equation.

Making substitutions of ai|i=(1,2,3) in detH3 we get

a1×a2−a3 = (µv+(αb+δv))(αb+δv)µv+µs(αb+δv)µv+(µv+µs+(αb+δv))((αb+

δv) +µv)(βvV
∗+µs) + βvV

∗(αb + δv)µv + βvV
∗((αb + δv) +µv)(βvV

∗+µs)− (αb +

δv)µvτvnvβvS
∗−β2

vV
∗τvnvS

∗−[τvnvβ
2
vV
∗S∗+((αb+δv)(µv)−τvnvβvS∗)(βvV ∗+µs)].

Therefore, with simplification of terms we get

a1a2−a3 = (µv+(αb+δv))(αb+δv)µv+(µv+µs+(αb+δv))((αb+δv)+µv)(βvV
∗+µs)+

βvV
∗((αb+ δv) +µv)(βvV

∗+µs)− (αb+ δv)µvτvnvβvS
∗+ τvnvβvS

∗(µs−βvV ∗) > 0

provided µs > βvV
∗. Since a1 > 0, a2 > 0, a1a2 > a3, then the characteristic

equation (3.30) has negative real parts, thus E1 is locally asymptotically stable

provided conditions µv(αb + δv) > τvn1βvS
∗ and µs > βvV

∗ hold. Therefore the

endemic steady state E∗2 , where it exists, is always locally asymptotically stable.
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3.5.5 Pathogen fitness (RIP )

The threshold quantity RIP is the pathogen fitness of the infection (Gilchrist et

al., 2004). The threshold number cannot be determined from the structure of

the mathematical model alone, but depends on the definition of infected and

uninfected compartments (Van Den Driessche & Watmough, 2002). Pathogen

fitness gives information about the infection growth and control. If the pathogen

fitness RIP is less than unity, then the infection–free steady state is locally as

well as globally stable. If RIP is less than unity, the infection can be controlled

through different ways like treatment and vaccination. On other hand if RIP is

greater than unity, the chronic–infection steady state becomes stable locally as

well as globally and the infection exists permanently in the population.

We use the next generation operator method Van Den Driessche & Watmough

(2002) on model (3.1) to compute the pathogen fitness. Suppose ẋi = fi(x) =

Fi(x)−Vi(x), i=1,....,n, whereVi = V −i −V +
i and F = [fij ] and x = Iv, Ib, Ivb, B, V

a group of new infections and V = [vij ] (the outgoing infections from the infectious

compartments).

Let F = ∂Fi(x)
∂xi
|xi=E1 and V = ∂Vi(x)

∂x
|xi=E1 .

By restating the five conditions given as A(1)–A(5) in Van Den Driessche &

Watmough (2002) as

The functions described above satisfy these conditions.

A(1): If x ≥ 0, then Fi; V+
i ,V

−
i ≥ 0 for i=1,...,n,

A(2): If xi = 0, then (V −i , in particular, if x ∈ Xs then V−i = 0 for i=1,...,m,

A(3): Fi = 0, if i > m,

A(4): If x ∈ Xs, then Fi = 0 and V+
i (x) = 0,

A(5): If F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts.

From model (3.1), we obtain a Jacobian, J = DXifi(E0) whereXi = (S, Iv, Ib, Ivb, B, V ) ∈
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R6, DXifi(E0) = ∂fi
∂Xi
|E0=( Λ

µs
,0,0,0,0), fi = (Ṡ, İv, İb, İvb, Ḃ, V̇ ) and E0 is the infec-

tion–free steady state

Therefore, we obtain

J(E0) =



−µs 0 0 0 −βbΛ
µs

− βvΛ
µs+aΛ

0 −µv 0 0 0 βvΛ
µs+aΛ

0 0 −µb 0 βbΛ
µs

0

0 0 0 −µV B 0 0

0 0 τbnb 0 r − (αv + δb + γam) 0

0 τvnv 0 τvbnvb 0 −(αb + δv)


(44)

Hence using the conditions above we partition the matrix J(E0)
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Since each transfer has directed individual then;

F =



βvSV
1+aS+bV

βbSB

0

0

0


we evaluate the Jacobian at infection–free state to obtain:

F =



0 0 0 0 βvΛ
(µs+aΛ)

0 0 0 βbΛ
µs

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


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Suppose the outgoing infections from the infectious compartments are given by:

V =



µvIv + β∗bBIv

µbIb + β∗vV Ib

µvbIvb − β∗vIbV − β∗b IbB

(αv + δb)B + γamAB
A+hB

− rB(1− B
K

)− τbnbIB

(αb + δv)V − τvnvIv − τvbn2Ivb



Moreover, computing the Jacobian at infection–free we obtain:

V =



µv 0 0 0 0

0 µb 0 0 0

0 0 µvb 0 0

0 −τbnb 0 (αv + δb + γam)− r 0

−τvnv 0 −τvbnvb 0 αb + δv


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Therefore the inverse of the outgoing infections from the infectious compartments

is given by:

V −1 =



1
µv

0 0 0 0

0 1
µb

0 0 0

0 0 1
µvb

0 0

0 − τbnb
µb((αv+δb+γam)−r) 0 1

(αv+δb+γam)−r 0

τvnv
µv(αb+δv)

0 τvbnvb
µvb(αb+δv)

0 1
αb+δv


Therefore, we compute the product

F × V −1 =



J11 0 J13 0 J15

0 J22 0 J24 0

0 0 J33 0 0

0 0 0 0 0

0 0 0 0 0



(3.31)

with J11 = βvτvnvΛ
µv(µs+aΛ)(αb+δv)

, J13 = τvbnvbβvΛ
µvb(µs+aΛ)(αb+δv)

, J15 = βvΛ
(µs+aΛ)(αb+δv)

, J22 =

τbnbβbΛ
µsµb((αv+δb+γam)−r) , J24 = βbΛ

µs((αv+δb+γam)−r) , J33 = 1
µvb
.

Thus from equation (3.31), the eigenvalues are evaluated as λi|i=(1,2,3) = 0,
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λ4 = βvτvnvΛ
µv(µs+aΛ)(αb+δv)

= RI ,

and λ5 = τbnbβbΛ
µsµb((αv+δb+γam)−r) = RP .

Since conditions A(1)–A(5) have been satisfied, then the viral fitness for the

pathogens is RIP = ρ(FV −1) = max{RI , RP}, where RI and Rp are

RI =
βvΛτvnv

µv(µs + aΛ)(αb + δv)
,

RP =
βbΛτbnb

µsµb((αv + δb) + γam− r)
. (3.32)

and ρ(FV −1) is the spectral radius.

The pathogen fitness for influenza A virus and pneumococcus is interpreted as:

The pathogen fitness for influenza A virus RI is the product of the uninfected

respiratory epithelial cell infection rate βv, the average number of newly infected

cells Λ
µs+aΛ

, the number of infectious IAV particles liberated from lysis of infected

cells nv, the average duration of exposure 1
(αb+δv)

and the chance that the infected

cell survives toxicity and interaction with bacteria during replication τv
(αb+δv)

.

The pathogen fitness for pneumococcus RP is the product of the uninfected res-

piratory epithelial cell infection rate βb, the number of infectious pneumococcus

particles released from lysis of infected cells nb, the average number of newly in-

fected cells Λ
µs
, the average duration of exposure 1

(αv+δb)+γam−r
, and the probability

that the infected cell survives toxicity and interaction with bacteria and alveolar

macrophage phagocytosis τb
(αv+δb)+γam−r

.
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3.6 Existence and uniqueness of steady states

3.6.1 Infection–free steady state (IFSS)

The infection–free steady state is a set of points of model (3.1) obtained in the

absence of the virion or bacterium. The IFSS for our model thus is given by

E0 = (S, Iv, Ib, Ivb, B, V ) = (
Λ

µs
, 0, 0, 0, 0, 0).

We state the following lemma

Lemma 3.6.1. There is a unique infection–free steady state E0 for model (3.1)

Illustration. By this Lemma we substitute E0 into model (3.1). The results

indicate that all the derivatives of the sub–populations are equal to zero, thus the

infection–free steady state is unique.

3.6.2 Endemic steady state (ESS)

Model (3.1) has an endemic steady state E∗IP = (S∗, I∗v , I
∗
b , I

∗
vb, B

∗, V ∗) and exists

if the entire population in each sub–population is positive that is S∗ > 0, I∗v >

0, I∗b > 0, I∗vb > 0, B∗ > 0, V ∗ > 0. By equating the R.H.S of model (3.1) to zero

and solving the resulting system of equations, at the endemic equilibrium E∗IP as
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S∗ =
Λ(1 + bV ∗)

βvV ∗ + βbB∗ + µs
,

I∗v =
βvV

∗

(β∗B∗ + µv)(βvV ∗ + βbB∗ + (µs + Λa))
,

I∗b =
βbB

∗Λ(1 + bV ∗)

(µb + β∗vV
∗)(µs + βvV ∗ + βbB∗)

,

I∗vb =
β∗V ∗ + β∗b I

∗
vB
∗

µvb
,

B∗ = B∗+,

V ∗ =
τvnvI

∗
v + τvbnvbI

∗
vb

(αb + δv)

where B∗+ is the positive real root of the following equation as to B∗:

F (B∗) ≡ b2B
∗2 + b1B

∗ + b0 = 0, (3.33)

with b2 = hr(µb + β∗vV
∗)(βvV

∗ + µs + βb),

b1 = (µb + β∗vV
∗)(βvV

∗ + µs)
(
r(A− kh) + βbk(A(αv + δb + γam) + h(αv + δb))−

kΛτbnbβb(1 + bV ∗)
)
,

b0 = (µb + β∗vV
∗)
(
βbr(A− k(h+A)) + k(βvV

∗ + µs)(βb[A(αv + δb) + γam] + (αv +

δb)h− rA)
)
− AβbΛτbnbk(1 + bV ∗).

Obviously our model has two possible steady states given by

E∗IP (1) = (S∗, I∗v , I
∗
b , I

∗
vb, B

∗+, V ∗) and E∗IP (2) = (S∗, I∗v , I
∗
b , I

∗
vb, B

∗−, V ∗)

We note that if b0 < 0, there are two positive equilibria β∗+ =
−b1−
√
b21−4b2b0

2b0

and β∗+=−b1+
√
b21−4b2b0

2b0
. Therefore, if b0 < 0 and b2 > 0 by Descartes’ rule of sign,

the quadratic equation (3.34) has a unique positive real root β∗+, hence there is a

unique chronic–infection steady state E∗IP (1) = (S∗, I∗v , I
∗
b , I

∗
vb, B

∗+, V ∗) if RIP > 1.
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3.7 Stability of steady states

3.7.1 Local stability of the infection–free steady state (IFSS)

Theorem 3.7.1. If αv + δb + γam > r holds, the IFSS of model (3.1), given by

E0, is locally asymptotically stable (LAS) if the effective pathogen fitness RIP < 1

(RI < 1 & RP < 1), and unstable if RIP > 1 (RI > 1 & RP > 1).

Proof. The variational matrix for model (3.1) at the infection–free steady state

E0 is given by

Jm =



−µs 0 0 0 −βbΛ
µs

− βvΛ
µ+aΛ

0 −µv 0 0 0 βvΛ
µ+aΛ

0 0 −µb 0 βbΛ
µs

0

0 0 0 −µvb 0 0

0 0 τbnb 0 −A(αv + δb + γam− r) 0

0 τvnv 0 τvbnvb 0 −(αb + δv)



.(3.34)

The infection–free steady state is asymptotically stable if and only if the

trace (Jm) < 0 and the det(Jm) > 0. Therefore, from the variational matrix (3.34),

we obtain

trace(Jm) = −
(
µs + µv + µvb + A(αv + δb + γam− r) + (αb + δv)

)
< 0,

det(Jm) = ξ(1−Rp)(1−RI) > 0 (3.35)
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with ξ = µ2
sµvbµb(αv + δb + γam− r)(µv(αb + δv)).

Since parameters µs, µv, µvb, A, αv, δb, γam, r, αb and δv are positive, then

−
(
µs + µv + µvb + A(αv + δb + γam− r) + (αb + δv)

)
< 0.

Hence, trace(Jm) < 0. Additional, for RP < 1 and RI < 1 the det(Jm) > 0.

Since trace (Jm) < 0 and det(Jm) > 0 in equation (3.35) have been satisfied, then

the IFSS (E0) is locally asymptotically stable wheneverRIP < 1. �

Numerical simulations of the model (3.1) in Figure 3.2, depicts an infection–free

Figure 3.2: Simulation of model (3.1), the free–infection steady state, with
populations Iv = Ib = Ivb = B = V = 0. The rest of the parameters are as in
Table 3.2 and Table 3.1.

steady state. The threshold condition is RIP = 1, and for RIP < 1, the

uninfected steady state is locally stable and unstable otherwise. The natu-

ral death rate exposes the basal cell layer and basement membrane, allow-

ing for bacterial adherence and invasion (Chertow & Memoli, 2013). Increas-

ing the natural death rate (µs = 0.0625 (RP = 2.235 > RI = 0.8695) to

µs = 0.625 (Rp = 0.2236 < RI = 0.8695) implies a reduction in the total

number of uninfected cells, and decreasing the natural death rate (µs = 0.0625

(RP = 2.235 > RI = 0.8695) to µs = 0.00625 (Rp = 22.3597 > RI = 0.8695)

implies an increment in the number of uninfected cells. The results are in line

with Theorem 3.7.1.

53



The biological implication of Theorem 3.7.1 is that the spread of the disease

can be effectively controlled if the initial sizes of the sub–populations of the

model (3.1) are in the basin of attraction of the DFE (E0), that is in general if

RIP is less than unity, the infection can’t establish itself in the respiratory cell

population, thus the infection dies out in the long run. Whereas if RIP > 1 the

infection will persist in the population leading to disease establishment in the

host.

3.7.2 Local stability of the endemic steady state (ESS)

The local stability of the ESS will be analytically studied by analyzing the

eigenvalues of the variational matrix at endemic steady state using Routh–Hurwitz

criterion.

Theorem 3.7.2. The unique endemic steady state of model (3.1) is locally

asymptotically stable, if RIP > 1

Proof. The variational matrix Jm(S∗, I∗v , I
∗
b , I

∗
vb, B

∗, V ∗) associated with the
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endemic steady state (E∗ = S∗, I∗v , I
∗
b , I

∗
vb, B

∗, V ∗) is given by

Jm =



k0 0 0 0 −βbS∗ k1

k2 k3 0 0 −β∗b I∗v k4

βbB
∗ 0 k5 0 βbS

∗ −β∗vIb

0 β∗bB
∗ β∗vV

∗ −µvb β∗b Iv β∗vIb

0 0 τbnb 0 k6 0

0 τvnv 0 τvbnvb 0 −(αb + δv)



. (3.36)

with k0 = −
(
µs + βbS

∗B∗+ βvV ∗(1+bV ∗)
(1+aS∗+bV ∗)2

)
, k1 = − βvS∗(1+aS∗)

(1+aS∗+bV ∗)2 , k2 = βvV ∗(1+bV ∗)
(1+aS∗+bV ∗)2 ,

k3 = −(µv + β∗bB
∗), k4 = βvS∗(1+aS∗)

(1+aS∗+bV ∗)2 , k5 = −(µb + β∗vV
∗),

k6 = −
(

2rB∗

k
+ γamA(A+hB∗)+γamAB∗h

(A+hB∗)2 + (αv + δb)− r
)

The characteristic polynomial corresponding to Jm(S∗, I∗v , I
∗
b , I

∗
vb, B

∗+, V ∗) about

E∗ = (S∗, I∗v , I
∗
b , I

∗
vb, B

∗+, V ∗) is given by

H(y) = h6y
6 + h5y

5 + h4y
4 + h3y

3 + h2y
2 + h1y + h0, (3.37)

The coefficient h6 of y6 in equation (3.37), is always positive. If all preceding

coefficients are positive by Descartes’ rule of signs implies that there is no zero of

the polynomial in equation(3.37) with a positive real number. Whereas if h0 < 0,

the polynomial equation (3.37) has one or more sign change among consecutive

parameters with at most six (6) positive roots of y or equivalent of six negative

roots of y. Therefore, all zeros of the polynomial (3.37) have negative real parts.
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The Routh–Hurtwiz criterion for polynomial equation (3.37) gives six negative

eigenvalues if the conditions hi > 0, for i = 1, 2, 3,. . . , 6 are satisfied. The relevant

Routh–Hurtwiz criteria in Linda (2007) could be used to demonstrate that the

model (3.1) is locally asymptotically stable when RIP > 1.

3.7.3 Global stability of the infection–free steady state (IFSS)

For effective viral–bacterial infection elimination in the epithelial cell population,

a global asymptotic stability result has to be proved for the IFSS.

Theorem 3.7.3. If RIP < 1(RI < 1 & RP < 1), then the infection–free steady

state E0 = {X∗, 0} of model (3.1) is globally asymptotically stable in Ω and there

is no unique endemic steady state.

Proof. Let X = S ∈ R be a representative of uninfected epithelial cell population

and Z = (Iv, IB, Ivb, B, V ∈ R5) be a representative of the infected population.

The co–infection model (3.1) can be re–written as


dX
dt

= F (X,Z),

dZ
dt

= G(X,Z), G(X, 0) = 0.

(3.38)

where

F (X,Z) =


Λ− βvSV

1+aS+bV
− βbSB − µsS

 ,
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G(X,Z) =



βvSV
1+aS+bV

− (β∗bB + µv)Iv

βbSB − (µb + β∗vV )Ib

β∗vIbV + β∗b IvB − µvbIvb

rB
(
1− B

K

)
+ τbnbIb −

(
αv + δb + γamA

A+hB

)
B

τvnvIv + τvbnvbIvb − (αb + δv)V



.

We consider a reduced system

dX

dt
|Z=0 = Λ− µsX. (3.39)

This implies that (X∗, 0) = Λ
µs

is a globally asymptotically stable steady state.

Equation (3.39) gives

S = Λ
µs

+ (S(0) − Λ
µs

)e−µst, which approaches X∗ as t → ∞, this shows global

convergence of solution of (3.39) in Ω. We re–state the two conditions given as

H2 in Castillo-Chavez et al. (2002), that guarantee global asymptotic stability as

follows:

(a) dX
dt

= G(X, 0), X∗

(b) G(X,Z)=LZ − G̃(X,Z), such that G̃(X,Z) ≥ 0 for (X,Z) ∈ Ω

where L = DzG(X∗, 0) is an M–matrix (the off–diagonal elements of L are

non–negative) and Ω is the region where the model has a biological meaning. If

system (4.5) satisfies conditions (a) and (b) then, Theorem 3.7.3 holds.
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By linearization of G(X,Z), we obtain a matrix

L =



−µv 0 0 0 βvΛ
µs+aΛ

0 −µb 0 βbΛ
µs

0

0 0 −µvb 0 0

0 τbnb 0 r − (αv + δb + γam) 0

τvnv 0 τvbnvb 0 −(αb + δv)



. (3.40)

Therefore, G(X,Z) can be expressed as G(X,Z) = LZ − Ḡ(X,Z), where

LZ =



βvΛV
µs+aΛ

− µvIv

βbΛB
µs
− µbIb

−µvbIvb

(
r −

(
αv + δb + γam

A+hB

))
B + τbnbIb

τvnvIv + τvbnvbIvb − (αb + δv)V



, (3.41)
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and

G̃(X,Z) =



G̃1(X,Z)

G̃2(X,Z)

G̃3(X,Z)

G̃4(X,Z)

G̃5(X,Z)



=



β∗bBIv

β∗vV (t)Ib

−(β∗vIbV + β∗b IvB)

rB2

K

0



. (3.42)

Thus, from equation (3.42) G̃3(X,Z) < 0, hence condition (b) is not satisfied. This

indicates that the infection–free steady state for model (3.1) may not be globally

asymptotically stable whenever RIP < 1 (RI < 1 & RP < 1), hence the global

asymptotic stability of the infection–free steady state fails from Theorem 3.7.3.

3.7.4 Global stability of endemic steady state

In this Section, we show the global stability of endemic steady state for model (3.1).

We give specific coefficients of Lyapunov functions for the global stability of unique

endemic equilibrium by the graph–theoretic method found in Guo et al. (2008)

and Shuai & Driessche (2013).

Theorem 3.7.4. The unique endemic steady state of model (3.1) is globally

asymptotically stable.

Proof. We adapt Lyapunov functions of the integral form S − S∗ −
∫ S
S∗

f(S∗,I∗)
f(τ,I∗)

dτ

used in Korobeinikov (2007); Huang et al. (2011); Elaiw & Azoz (2013).
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By setting the vertice’s corresponding to system (3.1) to be

L1 = S − S∗ −
∫ S

S∗

(
f1(S∗, V ∗)

f1(φ, V ∗)
+
f2(S∗, B∗)

f2(φ,B∗)

)
dφ,

L2 = (Iv − I∗v − I∗v ln Iv),

L3 = (Ib − I∗b − I∗b ln Ib)

L4 = (Ivb − I∗vb − I∗vb ln Ivb),

L5 = (B −B∗ − lnB∗),

L6 = E(V − V ∗ − V ∗ lnV ). (3.43)

Such that we have

L(S, Iv, Ib, Ivb, B, V ) = S − S∗ −
∫ S

S∗

(
f1(S∗, V ∗)

f1(φ, V ∗)
+
f2(S∗, B∗)

f2(φ,B∗)

)
dφ

+ (Iv − I∗v − I∗v ln Iv) + (Ib − I∗b − I∗b lnIb)

+ (Ivb − I∗vb − I∗vb ln Ivb) + (B −B∗ − lnB∗) + (V − V ∗ − V ∗ lnV ).

We consider system (3.43) for vertex 1 and compute the time derivative of L1 to

get

L̇1 = (3− f1(S∗, V ∗)

f1(S, V ∗)
− S∗

S
)(Λ− βvSV

1 + aS + bV
− βbSB − µsS). (3.44)

We simplify L̇1 to get

L̇1 = 3f1(S∗, V ∗)
(

1− f1(S, V )

f1(S∗, V ∗)

)
+ 3βbS

∗B∗
(

1− SB

S∗B∗

)
+ 3µsS

∗
(

1− S

S∗

)
− f1(S∗, V ∗)

f1(S, V ∗)

(
f1(S∗, V ∗)

(
1− f1(S, V )

f1(S∗, V ∗)

)
+ βbS

∗B∗
(

1− SB

S∗B∗

)
+ µ∗S

(
1− S

S∗

))
− S∗

S

(
f1(S∗, V ∗)

(
1− f1(S, V )

f1(S∗, V ∗)

)
+ βbS

∗B∗
(

1− SB

S∗B∗

)
+ µs

(
1− S∗

S

))
(3.45)
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From equation (3.45), the arithmetic mean is greater than the geometric mean.

Thus we obtain

L̇1 ≤ 3

(
f1(S∗, V ∗)

(
1− f1(S, V )

f1(S∗, V ∗)

)
+ βbS

∗B∗
(

1− SB

S∗B∗

))
+ 3µsS

∗
(

1− S

S∗

)
: a12G12 + a13G13 (3.46)

Let f(yi) = 1− yi + ln yi|(i=1,2,3) < 0 whenever yi > 1.

Clearly L̇1 < 0 and L̇1 = 0 for f1(S∗, V ∗) = f1(S, V ), S = S∗ and B = B∗.

We apply the same technique as shown in the Appendix 3 to obtain the remaining

vertice’s, hence

L̇2 ≤ β∗b I
∗
vB
∗
(

1− IvB

I∗vB
∗

)
: a24G24,

L̇3 ≤ βbS
∗B∗

(
1− I∗bSB

IbS∗B∗

)
: a31G31,

L̇4 ≤ β∗b I
∗
vB
∗
(

1− IvBI
∗
vb

I∗vB
∗Ivb

)
+ β∗vI

∗
b V
∗
(

1− I∗b V I
∗
vb

IbV ∗Ivb

)
: a42G42 + a43G43,

L̇6 ≤ τvn1I
∗
v

(
1− IvV

∗

I∗vV

)
+ τvbn2I

∗
vb

(
1− V ∗Ivb

V I∗vb

)
: a62G62 + a64G64. (3.47)

However,

L̇5 ≤ rB∗
(

1− B∗

K

)(
1−

B(1− B
K

B∗(1− B∗

K

)
+ τbnbI

∗
b

(
1− IbB

∗

I∗bB

)
. (3.48)

has been ignored because it is a self loop.
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a12 a42

a24 a64

a62

a43a31a13

Figure 3.3: A weighted simple digraph for influenza A virus and pneumococcus
co–infection

We assume that H is a spanning set of G having the same vertex sets, then H is

called a sub–digraph of G. By assigning a positive weight to each edge, then the

digraph G is said to be weighted. The weight W (H) of a sub–digraph H is the

product of the weights on all its arcs. Suppose G is a weighted digraph having n

vertices. We consider an n× n weighted matrix denoted by M = (aij) such that

aij > 0 equal to the weight of arc (j, i) if it exists and 0 otherwise.

From Figure 3.7.4, along each cycle we have

G13 +G31 = 0,

G42 +G24 = 0,

G12 +G31 +G43 +G24 = 0. (3.49)

Applying Theorem (3.5) in Shuai & Driessche (2013), lemmas 4.1 & 4.3 in Din et

al. (2016) and ignoring a vertex with a self loop, there exists ci, 1 ≤ i ≤ 5 such

that L(X) =
∑5

i=1 ciLi is a Lyapunov function of model (3.1). From Figure and

using equation (3.49), we obtain the relations:
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d−(4) = 2; implying that c2a24 + c6a64 = c4a43 + c4a42 but a24 = a42, hence

(c2 − c4)a24 = c4a43 − c6a64. (3.50)

d+(1) = 1; implying c3a31 = c1a12 + c1a13. We observe that, a13 = a31 thus we get

c1(a31 + a12) = c3(a31). (3.51)

By making substitutions from system (3.51) we obtain

c1 =
c3β

∗
bS
∗B∗

βbS∗B∗ + 3f1(S∗, V ∗)
. (3.52)

d−(2) = 3; implying c1a12 + c4a42 + c6a62 = c2a24, however, a24 = a42 thus we

obtain

(c2 − c4)a24 = c1a12 + c6a62. (3.53)

d−(1) = 1; implying c3a31 = c4a43 + c1a13, we note that a13 = a31 hence the

expression yields

(c3 − c1)a13 = c4a43. (3.54)

From system (3.52), let c1 = 1. Then we obtain c3 = βbS
∗B∗+3f1(S∗,V ∗)
βbS∗B∗ .

We make substitutions of c3 and c1 in system (3.54) to obtain

c4a43 = a13

(
βbS

∗B∗ + 3f1(S∗, V ∗)

βbS∗B∗
− 1

)
. (3.55)

FRom equation (3.55) we have

c4 =
3f1(S∗, V ∗)βbS

∗B∗

βbS∗V ∗β∗vI
∗
b V
∗ =

3f1(S∗, V ∗)

β∗vIbV
∗ . (3.56)
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Combining system (??) and (3.52) gives

c6 =
c4a43 − c1a12

a62 + a64

.

Substituting for c1, a43, a12, leads to

c6 =
3f1(S∗, V ∗)− 3f1(S∗, V ∗)

a62 + a64

= 0.

Substituting for c6 in system (3.52) we get

c2 = c4 +
c1a12

a24

.

Hence

c2 =
3f1(S∗, V ∗)

β∗vI
∗
b V
∗ +

3f1(S∗, V ∗)

β∗b I
∗
vB
∗ = 3f1(S∗, V ∗)

(
βbI
∗
vB
∗ + βvI

∗
b V
∗

β∗vI
∗
b V
∗β∗b I

∗
vB
∗

)
.

Therefore,

L(X) =
5∑
i=1

ciLi = L1 + 3f1(S∗, V ∗)

(
βbI
∗
vB
∗ + βvI

∗
b V
∗

β∗vI
∗
b V
∗β∗b I

∗
vB
∗

)
L2

+
βbS

∗B∗ + 3f1(S∗, V ∗)

βbS∗B∗
L3 +

3f1(S∗, V ∗)

β∗vIbV
∗ L4. (3.57)

with X = (S, Iv, Ib, Ivb, B, V )

Hence, L(X) is a Lyapunov function for model (3.1). One can verify that {E∗}

is the only invariant set in int(Ω) where L′(X) = 0, therefore, E∗ is globally

asymptotically stable in int (Ω). The epidemiological implication of the result is

that the infection will establish itself in the respiratory epithelial cell population

whenever RIP > 1 irrespective of the initial number of the infectious epithelial

cell population, ultimately the co–infected cell population approaches a constant

level.
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3.7.5 Sensitivity analysis of the model parameters on the

pathogens’ fitness

Under this section, model parameters are varied with respect to the pathogen

fitness threshold, RIP = max {RI , RP} of the model (3.1). We carry out a sensi-

tivity analysis of the pathogen fitness to the model parameter. This will help us

in identifying and verifying model parameters that most influence the pathogen

fitness threshold for the pathogens. Further, values obtained for sensitivity in-

dexes indicate which parameters should be targeted most for intervention purposes.

The normalized forward sensitivity index of a variable to a parameter is the

fraction of the relative change in the variable to the relative change in the pa-

rameter (Chitnis et al., 2008). If the variable is a differentiable function of the

parameter, the sensitivity index may be defined using partial derivatives. The

normalized forward sensitivity index technique outlined in Tilahun et al. (2017) is

used to obtain indices of RI and RP . Therefore, 4R0
p = ∂R0

∂p
× p

R0

with R0 =variable of either RI or RP , 4R0
p the sensitivity index of either RI or

RP with respect to a given parameter and p = is a differentiable parameter.

Since the availability of literature and data especially on within–host influenza A

virus and pneumococcus co–infection is limited, the qualitative predictions of our

model (3.1) is dependent on estimating some of the parameter values shown in

Table 3.1 and Table 3.2.
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Table 3.1: Parameter values for influenza A virus and Streptococcus pneumoniae

Parameter value Reference

Influenza A virus

S(0) 4.0× 108 (Baccam et al., 2006)

Λ 6.25× 107 (Bocharov & Romanyukha, 1994)

I(0) 0

V (0) 107 (Chen et al., 2012)

µv 8.9× 10−1 (Cheng et al., 2017)

µs 6.25× 10−2 (Chen et al., 2012)

nv 103 − 104 (Hadjichrysanthou et al., 2016)

a 0.02 assumed

b 0.6 assumed

βv 2.7× 10−5 (Baccam et al., 2006)

δv 0.5-2 (Xing et al., 2017)

αb 3.2× 10−4 assumed

τv 8.6× 10−1 assumed

Streptococcus pneumoniae

B(0) 103 (Cheng et al., 2017)

Ib(0) 0

r 2.7× 101 (Smith et al., 2013)

τb 1.102× 10−6 assumed

K 2.3× 108 (Smith & Smith, 2016)

γa 8.877× 10−1 estimated
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Table 3.2: Parameter values for pneumococcus co–infection models

Parameter value Reference

Streptococcus pneumoniae

δb 2× 10−2 assumed

αv 10−1 assumed

nb 1× 103 assumed

h 5.0 (Metzger et al., 2015)

A 105.5 (Smith & Smith, 2016)

βb 1.2× 10−5 assumed

µb 1.34× 10−1 assumed

Co–infection |

µvb 5.2× 10−10 (Smith, 2017; Cheng et al., 2017)

τvb 2.4× 10−3 assumed

nvb 2.51× 101 (Smith et al., 2013)

β∗v 7.3× 10−8 assumed

β∗b 4.1× 10−6 assumed

The positive sign of sensitivity index of the pathogen fitness with respect to the

model parameters indicates that an increase (or decrease) in the value of each

of the parameters in such a group will lead to an increase (or decrease) in the

pathogen fitness of the infection. Whereas the negative sensitivity index of the

pathogen fitness threshold with respect to the model parameter implies that an

increase (or decrease) in the value of the parameter in this group, results into

a corresponding decrease (or increase) in the pathogen fitness of the infection,

and asymptotically results into persistence (or eradication) of the infection in the
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Table 3.3: Sensitivity indices of RI/RP to parameters of IAV and Pneumococcus
(SP), computed at the baseline parameter values given in Table 3.2 and Table 3.1

Parameter S.I of RI Parameter S.I of RP

βv +1.0 m -1.5

δv -9.9×10−1 γa -1.6

τv +1.0 Λ +1.0

µv -1.0 τb +1.0

nv +1.0 µs -1.0

a -9.9×10−1 βb +1.0

µs -4.9×10−8 nb +1.0

αb -2.1×10−4 r -5.9×10−1

Λ +4.9×10−8 αv -7.0×10−6

δb -3.3×10−2

epithelial cell population (see, Theorem 3.7.4). For instance, 4RI
βv

= 1, means

that, when βv is increased (or decreased) by 10%, increases or decreases RI by

10%. Therefore, with sensitivity analysis, one is able to get an insight on the

suitable intervention strategies to prevent and control the spread of the influenza

A virus and pneumococcus co–infection described by system (3.1).

Sensitivity analysis of model (3.1) revealed that the pathogen fitness for pneumo-

coccus and influenza A virus is most sensitive to maximum number of bacteria an

alveolar macrophage can catch (m), phagocytosis rate (γa), number of infectious

influenza A virus particles and pneumococcus liberated from lysis of infected cells

(nv & nb) and infection rates of pathogens βb and βv.
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3.7.6 The impact of pneumococcus on Influenza A virus

To analyze the effects of streptococcus pneumoniae on influenza A virus and vice

versa, we express RP in terms of RI . We solve for µs to obtain µs = A−aΛRI
RI

.

Substituting into (3.32) for RP , we obtain RP = BRI
A−aΛRI

,

where

A =
βvΛτvnv

µv(αb + δv)
, B =

βbΛτbnb
µb((αv + δb) + γam− r)

. (3.58)

Computing the partial derivative of RP with respect to RI leads to

∂RP

∂RI

=
AB

(A−RIaΛ)2
. (3.59)

If the R.H.S of (3.59) is equal to zero, this signifies that pneumococcus has no

effect on the dynamics of influenza A. If result (3.59) is less than zero, this implies

that a decrease in influenza A virus results into an increase of pneumococcus.

Whereas if expression (3.59) is greater than zero, an increase in influenza A virus

results in an increase of pneumococcus which implies an endemic steady state for

which the pneumococcus–influenza A virus co–infection is likely to occur in the

epithelial cell population.

3.7.7 The impact of Influenza A virus on pneumococcus

Similarly, expressing µs in terms of RP , we obtain µs = B
RP

. Substituting µs in

equation (3.32), we obtain

RI =
ARP

B + aΛRP

.
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By computing the partial derivative of RI w.r.t RP , we get

∂RI

∂RP

=
AB

(B + aΛRP )2
. (3.60)

where A and B are as in equation (3.58). When expression (3.60) is equal to

zero, this implies that pneumococcus bacteria has no impact on the transmission

dynamics of influenza A. If result (3.60) is less than zero, a decrease in pneumo-

coccus leads to an increase in influenza A virus, this implies that the infection

due to pneumococcus can be wiped out of the epithelial cell population. Whereas

if result (3.60) is greater than zero, it implies that an increase in pneumococcus

density results into an increase in influenza A density that gives rise to a chronic

infection. The implication of the above impact of influenza A virus and pneumo-

coccal existence and vice–visa results into a bifurcation state ( see Figure 3.4).

(a) (b)

Figure 3.4: Phase potraits for the dynamics of influenza A virus and pneumococcal
bacteria, (a) with parameter values nv = 103, nb = 105, variables S(0) = 4.8× 105,
Iv = 102, Ib = Ivb = B = V = 103 and (b) with parameter values nv = 104, nb =
103, variables S(0) = 4.8× 105, Iv = 103, Ib = 10, Ivb = B = V = 103 and other
parameters remain as in Table 3.1 and Table 3.2.

70



3.8 Model results and discussion

In this section, the simulations of the model (5.1), are carried out in MATLAB’s

standard solver for ODEs, the inbuilt function ode45. The function implements

a Runge–Kutta method with variable time step for efficient computation. The

results arrived at and the results of the sensitivity analysis are illustrated by sim-

ulating the behaviour of model (3.1) using various initial conditions of parameter

values in Table 3.1 and Table 3.2.

Computing RI and RP using the parameter values in Table 3.2 and Table 3.1,

the respective values are 0.8694 and 2.2359, hence the infection would persist

in the epithelial cell population for RIP = RP = 2.2359 > 1 and will die out if

RIP = RP < 1.

Our numerical results provides a theoretical means to justify that assumptions

made in the model development are biologically feasible. Figure 3.5 depicts re-

Figure 3.5: Simulation of model (4.8), global stability for populations of infected
cells (Iv) as function of time with parameter values: Λ = 6.25× 105,m = 95, nv =
102, βb = 1.2× 10−3, τv = 1.2× 10−2, τvb = 1.1× 10−4, β∗v = 7.3× 10−10; variables
Iv = Ib = B = 103, Ivb = 104 (thus RP = 17.1774 > 1 and RI = 2.4218 > 1), and
other parameters remain as in Table 3.1 and Table 3.2.

gion A with the existence of only pneumococcal infection after over powering
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influenza A virus at endemic steady state E∗IP and subsequently colonizing the

respiratory cell population, whereas region B shows the existence of only influenza

A virus that has been suppressed by pneumococcal infection. We note that the

two pathogens continue to co–exist and replace each other in the respiratory cell

population causing bacterial chronic infection. The intersection point is a Nash

equilibrium, where the two pathogens payoff themselves while competing for the

resources. The host’s fitness is most affected at this equilibrium because of the

presence of both pathogens at the same time. Figure 3.6 (a), depicts the effect of

(a) (b)

Figure 3.6: Simulation of model (3.1)(a) showing chronic levels of infected cells Ib
for different values of βb as function of time with parameter values:Λ = 6.25 ×
105, βb = 1.2 × 10−4, nb = 105, a = 2.0 × 10−2, b = 0.6, µb = 1.34 × 10−2, τb =
1.102× 10−5, variables; S(0) = 4.0× 103, Iv = Ivb = 102, Ib = B = 103, V = 107

(thus RP = 2235.9654 > 1 and RI = 8.6950 > 1). (b) Chronic levels of infected
cells Iv for different values of βv as function of time with parameter values:
nb = 103, τvb = 2.4 × 10−3, β∗v = 7.3 × 10−8, β∗b = 4.1 × 10−7, τv = 8.6 × 10−2,
variables; S(0) = 4.8 × 107, Iv = 104, Ib = 102, τvb = 10, B = 106, V = 104 and
other parameters remain as in Table 3.1 and Table 3.2, hence Rp = 2.2359 > 1
and RI = 86.9477 > 1

varying the infection rate due to pneumococcal βb. A high infection rate or low

infection rate maintains the pneumococcus infection in the infected population

and after a given period a constant unique chronic–infection level is attained that

is, increasing βb = 1.2× 10−5 (RP = 22.3597) to βb = 1.2× 10−4 (RP = 22.3597).

This implies that there is persistence of the infection due to pneumococcal in the
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cell population. A decrease in transmission coefficient from βb = βb = 1.2× 10−5

(RP = 22.3597) to βb = 1.2 × 10−6 (RP = 2.2360), implies that the infection is

persisting in the epithelial cell population. Therefore, the public health should

put measures to combat the high endemicity of pneumococcal to reduce RP to

less than unity.

Figure 3.6 (b), shows the effect of varying βv from 2.7× 10−5 (RI = 86.9477) to

2.7× 10−4 (RI = 869.4774), this implies that an increase in infection rate due to

influenza A virus results into an increase in the population density of new uprising

infections. It means that if the infection persists in the respiratory epithelial

cell population, more susceptible cells will be infected even then the population

will approach a constant level. However, the cases decrease with well managed

prevention measures. Whereas decreasing βv from 2.7 × 10−5 (RI=86.9477) to

2.7× 10−6 (RI=8.6948) leads to a decrease in the population of newly infected

epithelial cells that can eventually be phased out of the respiratory epithelial cell

population. Figure 3.7(a), the region of parameter space where only the influenza

A virus–pneumococcus co–infected exists and approaches a unique endemic steady

state. To reduce the co–endemicity, the number of pneumocaccal bacteria that

is caught by alveolar macrophage, the first arm of the immune system should

be increased by reducing influenza A virus that leads to depletion of alveolar

macrophage. To prevent such a co–infection, the alveolar macrophage (m) popu-

lation can be partially restored via the immune modulator such as granulocyte

macrophage colony stimulating factor (Smith, 2017).

Figure 3.7(b), shows the effect of varying the phagocytosis rate γa, the rate

at which peumococcus is phagocytosed should be increased because pneumococcus

viral load plays an important role in influenza A virus–pneumococcal co–existence.
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(a) (b)

Figure 3.7: Simulation of model (3.1)(a) Global stability of the positive endemic
steady state of co–infected cells (Ivb), showing varying values of maximum number
of bacteria alveolar macrophage (m) can consume (that is m = 60 (Rp = 3.7407),
m = 80 (RP = 2.2360), m = 100 (RP = 1.5945), with variables: S(0) =
4.0 × 10−1, Iv = Ib = Ivb = 103, B = 104, V = 106. (b) Global stability for
the co–infected population with changing effect of phagocytosis rate γa that is
γa = 8.877× 10−1 (RP=2.2360), γa=9.877× 10−1 (RP = 1.8927), γa=7.877× 10−1

(RP = 2.7310), with variables Iv = 10, Ib = Ivb = 103, B = 104, V = 103. The rest
of the parameters are as in Table 3.1 and Table 3.2.

(a) (b)

Figure 3.8: Solution trajectories for Epithelial population with variables: (a)a =
0.02, b = 0.6, S(0) = 4.0× 107, Iv(0) = 104, V (0) = 107, V (0) = 106 (RI = 0.86967)
(b) a = 0, b = 0.6, Iv(0) = 105, V (0) = 104(RI = 1.739× 107), (c)b = 0, a = 0.01
RI = 1.7393 with variables Iv(0) = 105, V (0) = 104. The rest of the parameters
are as in Table 3.1 and Table 3.2.

On the other hand if influenza A virus is assumed to be a resident strain

implying that an individual initially has influenza A virus infection, we study the
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(a) (b)

Figure 3.9: Solution trajectories for Epithelial population with variables: (c)a =
0.02, b = 0, S(0) = 4.0× 107, Iv(0) = 104, V (0) = 107, V (0) = 106 (RI = 0.86967)
(d) a = 0, b = 0,Λ = 6.25× 104, S(0) = 4.0× 103, Iv(0) = 104, V (0) = 105(RI =
17393), The rest of the parameters are as in Table 3.1 and Table 3.2.

inhibition effects on the dynamics of influenza A virus. If a = 0 and b = 0.6 > 0,

this implies that, a stable state is attained and the infectious proportion is high

enough for the infection to persist in the cell population. Secondly, if b = 0 and

a > 0 the infected cells and uninfected cells are globally stable, implying that

influenza A virus keeps circulating in the population which can cause disease

to the host. Thirdly, if b = 0 and a > 0 and b = 0 and a = 0 leads to a high

endemicity. Therefore, control measures should be instituted to keep the pathogen

fitness of influenza A virus below unity.

In this Chapter, a class of ODE within–host models with Beddington–DeAngelis

nonlinear incidence rate and the standard bilinear incidence rate is investigated.

The steady states for the infection–free steady state and endemic steady state

exist and are unique. The pathogen fitness was computed by next generation

operator method Van Den Driessche & Watmough (2002) and used in establish-

ing the local stability of the infection–free steady state. The global stability of
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the infection–free steady state of the model may not be globally asymptotically

stable whenever the pathogen fitness RIP is less than unity. A graph–theoretic

approach was used to prove the global stability of the endemic steady state. The

stability analysis of the given model (3.1) is carried out, when RIP < 1, the in-

fection–steady state Eo is locally asymptotically stable and unstable whenever RIP .

Numerical simulations of the model (3.1) show that the two infections co–exist

(with pneumococcus leading) when the pathogen fitness for each infection ex-

ceeds unity. The pneumococcus–endemic steady state, E∗, which exists when

RIP = RP > 1, is LAS if RI < 1, and unstable if RI > 1. In other words, influenza

A virus accelerates the persistence of pneumococcus growth when RI > 1 because

alveolar macrophage will be depleted and can’t offer protection to the epithelial

cell population. Co–infection typically occurs within a few days of influenza A

virus infection, at times of high viral shedding, individuals develop co–infection

between [1.3–11.1] days of influenza A virus infection. This result is consistent

with (Chertow & Memoli, 2013).

The results further, show that pneumococcus and influenza A virus co–exist,

as the steady state is bypassed, the pneumococcus replaces influenza A virus in it’s

region of existence. Due to co–existence of pneumococcus and influenza A virus

in the cell population, each pathogen has an impact on the other. Maintaining

pneumococcus or influenza A virus in the population increases the respective

population and doesn’t impact the same population, however a tipping point is

reached when the topology of the dynamical system changes, resulting into a

bifurcation.

Whenever two pathogens invade the respiratory cell population, assuming one

pathogen to be resident strain (in this case influenza A virus) and the second to
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be mutant (pneumococcal), one of the strains over powers the other and persists

in the population leading to severe infection. For the two coexisting pathogens

(conjecture 4.2) in Hussaini et al. (2016), one infection dominates the other when-

ever their pathogen fitness exceeds unity (RP > RI = RIP > 1). This implies that

the infection persists in the host cell that may result into bacteria pneumonia.

To this end, the next Chapter proposes a between–host pneumococcal pneu-

monia model, the fact that it’s has been shown to be caused by the most virulent

pathogen that overpowered IAV during the co–infection. The model considers

two time delays that influence the stability of the endemic steady state during

pneumococcal pneumonia spread.
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CHAPTER 4

BETWEEN–HOST PNEUMOCOCCAL

PNEUMONIA MODEL WITH TIME

DELAYS

4.1 Introduction

Uncertainties in the burden of pneumococcal disease are largely determined by

the proportion of pneumonia deaths attributable to pneumococcus (Wahl et al.,

2018). Models of infectious diseases with time delays have attracted attention

of scientists since time delays can alter the qualitative behavior of the system.

A Hopf–bifurcation may occur, if a time delay is introduced into a dynamical

system that could change the stability state of the equilibrium (stable equilibrium

becomes unstable) and could cause fluctuations in the system (Bianca et al., 2013).

4.2 Model formulation

A model for the dynamics of the bacterial pneumonia (pneumococcal) in a human

population with the total population size at time t denoted by N(t) is formulated.

The population is sub–divided into five mutually exclusive epidemiological classes:

susceptible, vaccinated, exposed, carrier and infected denoted by S(t), V (t), E(t),

C(t) and I(t); respectively. The mathematical formulation adopts a mass–action

incidence because it is important in deciding the dynamics of epidemic models

where the contact rate depends on the size of the total human population. The

force of infection for the vaccinated class is ϑβI(t), where 0 ≤ ϑ < 1 is the
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proportion of the sero–type not covered by vaccine (Tilahun et al., 2017).

The increase in the number of susceptible individuals comes from a constant

recruitment b through birth or migration and recovery of individuals. Several

vaccines wane with time, and so vaccinated individuals return to the susceptible

compartment, at a waning rate ζ. The susceptible individuals become infected

through a force of infection βI(t) and move to the latent class E(t).

The latent class, E(t) accounts for a time delay τ1 > 0 of the exposed indi-

viduals ie. the period between the time of an infection onset and the time of

developing pneumococcal clinical symptoms. Exposed individuals transfer to

the infectious class at a rate γ. Individuals in the carrier class C(t) become

symptomatic and join the infected class at a rate ρ.

The infectious class I(t) accounts for a time delay τ2 > 0: the time taken by

infected individuals to seek medical care. Infected individuals that delay to seek

medical care die of pneumococcal pneumonia at a rate δ. Infectious individuals

upon recovery transfer to the susceptible class at a rate φ. All classes exhibit

a per capita natural mortality rate µ. The description of model variables and

parameters is summarized in the nomenclature.

4.3 Model assumptions

The following assumptions are given to guide in the development of model equa-

tions:

(i) That every person in the population is susceptible to pneumococcal pneu-

monia disease
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(ii) A continuous vaccination strategy is received by the recruited susceptible

individuals at a rate ν, and that vaccination doesn’t affect the infectious.

(iii) Vaccination is not 100% efficient, which means there is a chance of being

infectious or carrier in small proportions

(iv) IAV is a resident (primary) pathogen and pneumococcus is secondary, and

the interaction promotes severe pneumococcal pneumonia

(v) Individuals that survive natural mortality µ through latent period [t− τ1, t]

and infectious period [t− τ2, t] have probability (survivorship function) e−µτ1

and e−µτ2 respectively.

The compartmental diagram of the model is shown in Figure 4.1.

SE V

I C

µE

µC

µV

bµS

µI

δe−µτ2I(t− τ2)

γe−µτ1E(t− τ1) φI

βIS

νcS

ζV

β1IV

ρC

Figure 4.1: A schematic diagram showing the dynamics of pneumococcal pneu-
monia. The dotted lines represent contacts made by individuals in the respective
classes and the solid lines show transfer from one class to another.

Based on the description of model variables, parameters, assumptions and from

Figure 4.1, the dynamics of the model are governed by the balance law of com-

partments stated as: rate of change=inflow transition rate−outflow transition

rate that is: Ẋ = sum of inflow transition rates− sum of outflow transition rates,
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thus the system of equations given by

Ṡ(t) = b+ ζV (t) + φI(t)− (ν + µ+ βI(t))S(t),

V̇ (t) = νS(t)− (µ+ ζ)V (t)− β1I(t)V (t),

Ė(t) = βI(t)S(t)− γe−µτ1E(t− τ1)− µE(t),

Ċ(t) = β1I(t)V (t)− (ρ+ µ)C(t), (4.1)

İ(t) = ρC(t) + γe−µτ1E(t− τ1)− δe−µτ2I(t− τ2)− (µ+ φ)I(t).

where, β1 = ϑβ.

To study the effect of time delays on the dynamics of pneumocccal pneumo-

nia, the previous work by (Tilahun et al., 2017) helped in attributing knowledge

to understand the current model. A new compartment of the latency is included

in the model. Two time delays; the first delay is introduced in the latency sub-

population because there is delayed time from the time an individual is infected

and when one becomes infectious. A second time delay of seeking medical care

is included in the infectious subpopulation because not seeking medical atten-

tion leaves individuals’ behaviors unchanged not to respond to existing control

measures and more individuals become infected.

4.3.1 Positivity of solutions

System (4.1) is a representation of the dynamics of the human populations, thus

it is required that all solutions are non–negative. We use the approach in Bodnar

(2000) and Yang et al. (1996), we let C be a Banach space of continuous real

valued functions ψ : [−τ, 0]→ R5
+ equipped with the supremum norm,

||ψ||C = supt∈[−τ,0]{|ψ1|, |ψ2|, |ψ3|, |ψ4|, |ψ5|}. The initial conditions of system (4.1)
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are represented by

S(t) = ψ1(t), V (t) = ψ2(t), E(t) = ψ3(t), C(t) = ψ4(t), I(t) = ψ5(t),

−τ ≤ t ≤ 0, (4.2)

where τ = max{τ1, τ2} and ψ = (ψ1, ψ2, ψ3, ψ4, ψ5)
T ∈ C, such that ψi(t) =

ψi(0) ≥ 0 (i = 1, 2, 3, 4, 5). The following Lemma establishes the positivity of the

solutions of system (4.1).

Lemma 4.2.1. Any solution of trajectories (4.1) with ψi(t) > 0; t ∈ [−τ, 0]

remains positive whenever it exists.

Proof. Suppose S(t) was to lose positivity on some local existence interval [0, T )

for some constant T > 0, there would be a time at t1 = sup{t > 0 : S(t) > 0}

such that S(t1) = 0.

From the first equation of system (4.1), it follows that

b+ ζV (t) + φI(t)− (ν + µ)S(t)− βI(t)S(t) > 0.

This implies that S(t) < 0 for t ∈ (t1−ε, t1), where ε is an arbitrary small positive

constant. This leads to a contradiction, it thus follows that S(t) is always positive.

Hence from the fundamental theory of differential equations, it is shown that there

exists a unique solution for S(t) of system (4.1) with initial data in R5
+ as follows

d

dt
(S(t)e

∫ t
0 (ν+µ+βI(t))dξ) = e

∫ t
0 (ν+µ+βI(t))dξ(b+ ζV (t) + φI(t)),

S(t) =

∫ t

0

((b+ ζV (σ) + φI(σ)) e−(ν+µ)t−
∫ t
σ βI(ξ)dξdσ

+ψ1(0)e−(ν+µ)t−
∫ t
0 βI(ξ)dξ,
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Therefore,

S(t1) = ψ1(0)e−(ν+µ)t1−
∫ t1
0 βI(ξ)dξ

+

∫ t1

0

((b+ ζV (σ) + φI(σ)) e−(ν+µ)t1−
∫ t1
σ βI(ξ)dξdσ > 0. (4.3)

Since S(t1) > 0, then S(t) > 0, t ≥ 0. This completes the proof.

Similarly, using the same technique we have

V (t2) = ψ2(0)e−(µ+ζ)t2−
∫ t2
0 βI(ξ)dξ +

∫ t2

0

e
∫ t2
σ (µ+ζ+β1I(ξ))dξνS(σ)dσ > 0. (4.4)

E(t3) = e−µt3ψ3(0) + e−µt3
(∫ t3

0

eµξ
(
βI(ξ)S(ξ)− γe−µτ1E(ξ − τ1)

)
dξ

)
> 0.(4.5)

C(t4) = e−(ρ+µ)t4

(
ψ4(0) +

∫ t4

0

(β1I(ξ)V (ξ)) e(ρ+µ)ξdξ

)
> 0. (4.6)

and

I(t5) = ψ5(0)e−(µ+φ)t5 (4.7)

+ e−(µ+φ)t5

(∫ t5

0

(
ρC(σ) + γe−µτ1E(σ − τ1)− δe−µτ2I(σ − τ2)

)
e(µ+φ)σ

)
dσ

Therefore, from the above integral forms of equations (4.3) to (5.20) all

solution trajectories are positive for all time t > 0 on [0,+∞].
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4.3.2 Boundedness

For boundedness of system (4.1) with initial condition (4.2), we consider the

following Lemma

Lemma 4.2.2. The closed set

Ωd = {S(t), V (t), E(t), C(t), I(t)} ∈ R5
+ : 0 ≤ S(t), V (t), E(t), C(t), I(t);

S(t) + V (t) + E(t) + C(t) + I(t) ≤ b

µ

is positively invariant and absorbing with respect to the set of DDE’s (4.1).

Proof. Summing all equations in system (4.1), yields

dN

dt
= b− µN(t)− δe−µτ2I(t).

Therefore, dN
dt
≤ b − µN(t) which implies that dN

dt
≤ 0 if N(t) ≥ b

µ
. Using the

standard comparison test in Nagy (2011), we get N(t) ≤ N(0)e−µt + b
µ
(1− e−µt).

Particularly, N(t) ≤ b
µ
if N(0) ≤ b

µ
for all time t > 0, hence Ωd is positively

invariant. Further, if N(t) ≥ b
µ
, then either the solution enter at finite time or

N(t) is close to π
µ
and the infected variables E,C and I tend to zero. Therefore,

Ωd is attracting implying that all solutions in R5
+ finally enter Ωd Consequently,

in Ωd, system (4.1) is mathematically and epidemiologically well–posed.

4.3.3 The control reproduction ratio

The basic reproduction ratio identifies the number of secondary infections from

the infected source and plays an important role in understanding the development

of epidemics with a vaccination program in place. The control reproduction ratio

R0 is computed using an approach in Van Den Driessche & Watmough (2008) and
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is given by R0 = Ru
0 +Rv

0,

where Ru
0 = βγe−µτ1S0

(µ+γe−µτ1 )(φ+µ+δe−µτ2 )
, Rv

0 = βρϑV 0

(ρ+µ)(φ+µ+δe−µτ2) . The quantity Ru
0 mea-

sures the expected number of secondary cases generated by an index case for the

susceptible individuals and Rv
0 represents new cases arising from the vaccination

program.

The control reproduction ratios with no delays (τ1 = 0, τ2 = 0) are given by

Ru
0 = βγS0

(µ+γ)(φ+µ+δ)
and Rv

0 = βρϑV 0

(ρ+µ)(φ+µ+δ)
.

4.4 Stability of equilibria

Let (S∗, V ∗, E∗, C∗, I∗) be the corresponding partial populations at the eventual

equilibrium point. Given that the values of the partial populations at the equi-

librium are stable, the delay–dependency vanishes so that limt→∞ I(t − τ2) =

limt→∞ I(t) = I∗ and limt→∞E(t− τ1) = limt→∞E(t) = E∗, such that at equilib-

rium, we have

b+ ζV ∗ + φI∗ − (ν + µ+ βI∗)S∗ = 0,

νS∗ − (µ+ ζ)V ∗ − β1I
∗V ∗ = 0,

βI∗S∗ − (γe−µτ1 + µ)E∗ = 0,

β1I
∗V ∗ − (ρ+ µ)C∗ = 0, (4.8)

ρC∗ + γe−µτ1E∗ − (µ+ δe−µτ2 + φ)I∗ = 0,

Ṡ∗ + V̇ ∗ + Ė∗ + Ċ∗ + İ∗ = b− µN∗ − δe−µτ2I∗ = 0.
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Hence, from system (4.8), we obtain the disease–free equilibrium P0 = (S0, V 0, 0, 0, 0),

where

S0 =
b(µ+ ζ)

(µ+ ζ)(ν + µ)− ζν
, V 0 =

bν

(µ+ ζ)(ν + µ)− ζν
, (4.9)

provided (µ+ ζ)(ν + µ) > ζν.

It should be noted that for ν > 0, the disease–free equilibrium is biologically feasible

for any epidemiological parameters, whereas in the absence of vaccination strategy,

i.e. for ν = 0, E0 is only feasible for epidemiological parameters in the susceptible

class. From system (4.8) the endemic equilibrium P ∗ = (S∗, V ∗, E∗, C∗, I∗) is

given as

S∗ =
b+ ζV ∗ + φI∗

ν + µ+ βI∗
,

V ∗ =
ν(b+ φI∗)

(ν + µ+ βI∗)(µ+ ζ + β1I∗)− νζ
,

E∗ =
β(ζν + a1)(bI∗ + φI∗2)

a1(γe−µτ1 + µ)(ν + µ+ βI∗)
, (4.10)

C∗ =
νβ1I

∗(b+ φI∗)

a1(ρ+ µ)
,

I∗ = I∗.

where a1 = (ν + µ+ βI∗)(µ+ ζ + β1I
∗)− νζ.
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4.4.1 Local stability of the disease–free equilibrium point

Suppose that P0 = (S0, V 0, 0, 0, 0) is a disease–free equilibrium point of sys-

tem (4.1), then the linearization matrix JP0 is given by

JP0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(µ+ ν) ζ 0 0 φ− βS0

ν −(mu+ ζ) 0 0 −βϑV 0

0 0 −µ 0 βS0

0 0 0 −(ρ+ µ) βϑV 0

0 0 0 ρ −(µ+ φ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

Clearly y1 = −µ is one of the negative roots (eigenvalues) that guarantee local

stability of the disease–free equilibrium P0. The remaining eigenvalues are obtained

from the characteristic polynomial given by

g(y) = y4 + e3y
3 + e2y

2 + e1y + e0 = 0, (4.11)

where e3 = 4µ+ν+ζ+ρ+φ, e2 = (µ+ζ)(2µ+ρ+ν)+(µ+φ)(2µ+ν+ζ)−βϑρV 0,

e1 = (µ+ ζ)(µ+ ρ)(2µ+ ν + φ) + (µ+ ν)(µ+ φ)(2µ+ ζ + ρ)− ζν(2µ+ ρ+ φ)−

βρϑ(2µ+ ν + ζ),

e0 = (µ+ ν)(µ+ ζ)
(

(ρ+ µ)(µ+ φ)− βρϑV 0
)

+ ζν(βρϑV 0 − (ρ+ µ)(µ+ φ).

Thus computing the roots of polynomial (4.11) gives

y2 = −µ, y3 = −(µ+ ζ + ν), y4 = −1
2

(
(2µ+ ρ+ φ) +

√
(ρ− φ)2 + 4βρϑV 0

)
,
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y5 = −1
2

(
(2µ+ ρ+ φ)−

√
(ρ− φ)2 + 4βρϑV 0

)
.

Since the rest of the roots are negative, root y5 is negative provided (µ+φ)(ρ+µ) >

βρϑV 0, holds implying that Rv
0 = βρϑbν

(µ+φ)(ρ+µ)

(
(µ+ζ)(ν+µ)−ζν

) < 1.

Thus we have the result below

Proposition 4.3.1. The disease–free equilibrium P0 is locally asymptotically sta-

ble if the control reproduction ratio R0 < 1, whenever conditions (µ+ζ)(µ+ν) > ζν

and Rv
0 < 1 are satisfied, and unstable otherwise.

To illustrate the stability of disease–free equilibrium, we use parameter values

in Table 4.1 with corresponding population estimates of S(0) = 10604, V (0) =

103, E(0) = C(0) = I(0) = 0 and the resulting simulation is given in Figure 4.2.

The biological implication of Proposition 4.4.1, means that in the long run the vac-

Figure 4.2: Simulation of model (4.1), the disease–free equilibrium, with popula-
tions parameters: φ = 3.57144× 10−1, β = 1.0102× 10−5, γ = 3.3333× 10−2 (with
R0 = 0.7873, Ru

0 = 0.1382, Rv
0 = 0.6490).

cinated and susceptible populations will be stable and pneumococcal pneumonia

will be under control.

4.4.2 The transcendental equation

We obtain the expression for the transcendental equation by linearizing system

(4.1) around
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P ∗ = (S∗, V ∗, E∗, C∗, I∗), to obtain



Ṡ(t)

V̇ (t)

Ė(t)

Ċ(t)

İ(t)



=



a1 a2 0 0 a3

a4 a5 0 0 a6

a7 0 a8 0 a9

0 a10 0 a11 a12

0 0 0 a13 a14





S(t)

V (t)

E(t)

C(t)

I(t)



+



0 0 0 0 0

0 0 0 0 0

0 0 a15 0 0

0 0 0 0 0

0 0 a16 0 a17





0

0

Eτ1

0

Iτ2



, (4.12)

a1 = −((µ+ ν) + βI∗), a2 = ζ, a3 = φ− βS∗, a4 = ν, a5 = −((µ+ ζ) + βϑI∗), a6 =

−βϑV ∗,

a7 = βI∗, a8 = −µ, a9 = βS∗, a10 = βϑI∗, a11 = −(ρ+ µ), a12 = βϑV ∗, a13 = ρ,

a14 = −(µ+ φ), a15 = −γe−µτ1 , a16 = γe−µτ1 , a17 = −δe−µτ2 , Eτ1 = E(t− τ1) and

Iτ2 = I(t− τ2).
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The variational matrix of (4.12) is given by

Jg =



a1 a2 0 0 a3

a4 a5 0 0 a6

a7 0 a8 − γe−(µ+λ)τ1 0 a9

0 0 0 a11 a12

0 0 γe−(µ+λ)τ1 a13 a14 − δe−(µ+λ)τ2



= 0,

Then, we obtain the transcendental equation of the linearized system at P ∗

g(λ, e−λτ1 , e−λτ2) = λ5 + k4λ
4 + k3λ

3 + k2λ
2 + k1λ+ k0

+(λ4 + l3λ
3 + l2λ

2 + l1λ+ l0)γe−(µ+λ)τ1

+(λ4 +m3λ
3 +m2λ

2 +m1λ+m0)δe−(µ+λ)τ2

+(λ3 + n2λ
2 + n1λ+ n0)γδe−(µ+λ)(τ1+τ2) = 0. (4.13)

with coefficients of the transcendental equation (4.13) given in Appendix A3(a).

4.4.3 Delay–free system

Here, to show the local stability of P ∗, we consider a situation where there are no

delays during the latent period (τ1 = 0) and in seeking medical care (τ2 = 0). By
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letting τ1 = τ2 = 0, equation (4.13) reduces to

g(λ) = λ5 + b4λ
4 + b3λ

3 + b2λ
2 + b1λ+ b0 = 0. (4.14)

with coefficients of polynomial equation in Appendix A3(b).

Proposition 4.3.2. The endemic equilibrium P ∗ is locally asymptotically stable

in the absence of delays

τ1 = τ2 = 0, iff the following Routh–Hurwitz conditions are satisfied

b0 > 0, b4b3 − b2 > 0, b2(b4b3 − b2) − b4(b4b1 − b0) > 0 and b1(b2(b4b3 − b2) −

b4(b4b1 − b0))− b0(b3(b4b3 − b2)− (b4b1 − b0)) > 0, with b4, b3, b2, b1 and b0 defined

in Appendix A3(b).

Using parameter values in Table 4.1 the characteristic equation (4.14) is given as

λ5 + 0.7364λ4 − 148.4λ3 − 4.9408λ2 − 0.3965λ− 0.0001806 = 0.

The resulting eigenvalues are given by: λ1 = 11.8, λ2 = −0.0005, λ3 = −12.5357,

λ4,5 = −0.01641± 0.4885i.

Since there exist a positive root for model (4.1), there is a stability change from

unstable to stable of the endemic equilibrium point P ∗ = (S∗, V ∗, E∗, C∗, I∗) =

(2099, 6, 54, 2, 100) that gives rise to a Hopf–bifurcation.

4.5 Existence of Hopf–bifurcation

Under this subsection, we discuss the stability of the endemic equilibrium point of

model (4.1). We use the approach in Song & Wei (2004) to prove the conditions

for continuation of unstable or stable switches at the endemic equilibrium point.

By choosing time delay τ = max = {τ1, τ2} as a bifurcation parameter.
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4.5.1 Delay only in latent period (τ1 > 0, τ2 = 0)

In such a situation the transcendental equation (4.13) reduces to

λ5 + k4λ
4 + k3λ

3 + k2λ
2 + k1λ+ k0

+(γλ4 + h3λ
3 + h2λ

2 + h1λ+ h0)e−(µ+λ)τ1 = 0, (4.15)

where q = e−µτ1 , h0 = qγ(l0 + n0δ), h1 = qγ(l1 + n1δ), h2 = qγ(l2 + n2δ), h3 =

qγ(l3 + δ).

Suppose the endemic equilibrium of system (4.1) is stable in the absence of

delay (τ2) to seek medical care, implying that Re(λ) = ξ(0) < 0. The bifurcation

value of τ10 > 0 occurs when λ(τ10) = ξ(τ10) + iw(τ10) is purely imaginary, for

ξ(τ10) = 0. Hence, defining the eigenvalue λ = wi, with infection rate oscilla-

tion frequency ( w > 0) and making a substitution in (4.15) and expressing the

exponential in terms of trigonometric ratios, we get

Im := a1 coswτ1 + a2 sinwτ1 = R1,

Re : a2 coswτ1 − a1 sinwτ1 = R2, (4.16)

where a1 = w(h1 − h3w
2), a2 = w(γw3 − h2w) + h0, R1 = w(k3w

2 − (w4 + k1)),

R2 = k2w
2 − (k4w

4 + k0).

By eliminating τ1 from equation (4.15), squaring and adding these two equa-

tions and putting w2 = z, we obtain the Hopf frequency below

H(z) = z5 +B4z
4 +B3z

3 +B2z
2 +B1z +B0 = 0, (4.17)
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where B4 = k4 − 2(k3 + γ), B3 = k2
3 + 2[(k1 + 2h2γ)− (k2k4 + h2

3)],

B2 = k2 + 2[(2h1h3 +k4k0)− (k1k3 + 2h0γ+h2
2)], B1 = k2

1 + 2[2h0h2− (h2
1 +k2k0)],

B0 = 2h2
0 + k2

0.

The two Propositions about stability and critical delay in Kirui et al. (2015) are

written as lemmas

Lemma 4.4.1. If the Bi(i = 0, 1, 2, 3, 4) guarantee the Routh–Hurwitz criteria,

then all eigenvalues of (4.17) have negative real parts for all delay τ1 ≥ 0 . Thus

the endemic equilibrium P ∗ if it exists is locally asymptotically stable whenever

τ1 ≥ 0, provided the endemic steady state is stable in the absence of the latent

period delay, specifically τ1 won’t affect the stability of the dynamical system, for

equation (4.17) without positive real roots.

Lemma 4.4.2. If Bi(i = 0, 1, 2, 3, 4) do not satisfy Routh–Hurwitz criteria, thus

B0 < 0 or B0 > 0 implies that (4.25) has at least one positive root and suppose

that, it has a pair of imaginary roots say ±iw10 for such a value of w10.

Consequently to obtain the main results in this work, we assume equation (4.17)

has at least one positive root w10 . By squaring and summing together the imaginary

and real parts in equation (4.16), we get

τ1 =
1

w
arccos

(
w2(h1 − h3w

2)(k3w
2 − (w4 + k1))

w(h1 − h3w2)2 + (w(γw3 − h2w) + h0)2

)
+

1

w
arccos

(
(w(γw3 − h2w) + h0)(k2w

2 − (k4w
4 + k0))

w(h1 − h3w2)2 + (w(γw3 − h2w) + h0)2

)
(4.18)

+
2nπ

w
.
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By denoting

τ
(m)
1n =

1

w1n

arccos

(
w2

1n(h1 − h3w
2
1n)(k3w

2
1n − (w4

1n + k1))

w1n(h1 − h3w2
1n)2 + (w1n(γw3

1n − h2w1n) + h0)2

)
+

1

w1n

arccos

(
(w1n(γw3

1n − h2w1n) + h0)(k2w
2
1n − (k4w

4
1n + k0))

w1n(h1 − h3w2
1n)2 + (w1n(γw3

1n − h2w1n) + h0)2

)
+

2nπ

w1n

,

m = 1, 2, . . . , m̃, n ∈ N

Thus we define

τ10 = τ (0)
n0

= min1≤n≤5{τ (0)
1n }, w10 = wn0 . (4.19)

and state the result as follows

Lemma 4.4.3. If τ10 and w10 are defined as (4.19) and H ′(z = w2) > 0. The

endemic equilibrium point P ∗ is linearly asymptotically stable for τ1 < τ10, unstable

for τ1 > τ10 and undergoes a Hopf–bifurcation at τ1 = τ10.

To ensure the occurrence of the Hopf–bifurcation, it is desirable to verify the

transversality condition. Without loss of generality, the delay τ1 is chosen as the bi-

furcation parameter. The essential condition for existence of the Hopf–bifurcation

is that the threshold eigenvalues traverse the imaginary axis with non–zero veloc-

ity.

Proposition 4.4.1. If Φ2(w10) > 0, where Φ2(w10) satisfies (4.22), system(4.1)

undergoes a Hopf–bifurcation at the endemic equilibrium as τ1 increases through

τ10.

Proof. (Transversality condition for Hopf–bifurcation)

Differentiating equation (4.15) with respect to τ1 we obtain

dτ1

dλ
=

(5λ4 + 4k4λ
3 + 3k3λ

2 + k1)eλτ1 + (4γλ3 + 3h3λ
2 + 2h2λ+ h1)

γλ5 + h3λ4 + h2λ3 + h1λ2 + h0λ
− τ1

λ
,(4.20)
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sign
[(dReλ)

dτ1

]
τ1=τ10

= sign
[
Re(

dλ

dτ1

)−1
]
λ=iw10

= sign
[
ReN1

]
+ sign

[
ReN2

]
= sign

[c3(c1 cos wτ1 + c2 sin wτ1) + c4(c1 sin wτ1 + c2 cos wτ1)

c2
3 + c2

4

]
+ sign

[(h1 − 3h3w2) + c4w(2h2 − 4γw3)

c2
3 + c2

4

]
. (4.21)

with

N1 =
c3(c1 coswτ10 + c2 sinwτ10) + c4(c1 sinwτ10 + c2 coswτ10)

c2
3 + c2

4

+
i(c3(c2 coswτ1 + c10 sinwτ10)− c4(c2sinwτ10 + c1 coswτ10)

c2
3 + c2

4

,

N2 =
(h1 − 3h3w

2) + c4w(2h2 − 4γw3) + i(c3w(2h2 − 4γw2) + (h1 − 3h3w
2))

c2
3 + c2

4

.

Any linear combination of a sine and cosine of equal periods is equal to a single

sine with the same period however, with an infection rate oscillation phase shift

Ψ (Sutton et al., 2007).

Therefore, we get

sign
[(dReλ)

dτ1

]
τ1=τ10

= sign
[
Re(

dλ

dτ1

)−1
]
λ=iw10

=
D0 sin(wτ1 + Ψ2) + (h1 − 3h3w

2) + c4w(2h2 − 4γw3)

c2
3 + c2

4

,

where c1 = 5w4 − 3k3w
2 + k1, c2 = 4k4w

3, c3 = w(γw4 − h2w
2 + h0), c4 =

w2(h3w
2 − h1),

D0 =
√

(c3c1 + c2c1)2 + (c3c2 + c4c1)2, D1
0 = c4w10(2h2−4γw3

10
),Ψ2 = arctan c3c1+c4c2

c3c2+c4c1
,

Let

Φ2(w10) = D0 sin(w10τ10 + Ψ) + (h1 − 3h3w
2
10

)

+ c4w10(2h2 − 4γw3
10

) > 0 (4.22)
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, if conditions (w10τ10 + Ψ2) ∈ (π, π
2
), h1 > 3h3w

2
10

and h2 > 2γw2
10

hold. Clearly

sign
[(dReλ)

dτ1

]
τ1=τ10

= sign
[
Re(

dλ

dτ1

)−1
]
λ=iw10

=
D0 sin(w10τ10 + Ψ2) + (h1 − 3h3w

2
10

) +D1
0

c2
3 + c2

4

,

has the same sign as Φ2(w10). This completes the proof.

Therefore, Proposition 4.5.1 implies that given m > 0, the eigenvalue λm(τ1)

of the characteristic equation (4.15) close to τ1m crosses the imaginary axis from

the left to the right as τ1 continuously changes from a value less than τ1m to one

greater than τ1m .

4.5.2 Delay only in seeking medical care by the infectious

(τ1 = 0, τ2 > 0)

To understand the influence of time delay in seeking medical care, we set τ1 = 0

in equation (4.13) yielding

g(λ, e−λτ2) = λ5 + p4λ
4 + p3λ

3 + p2λ
2 + p1λ+ p0

+(q4λ
4 + q3λ

3 + q2λ
2 + q1λ+ q0)pγδe−λτ2 = 0, (4.23)

where p = e−µτ2 , p4 = k4 +γ, p3 = k3 + l3γ, p2 = k2 +γ, p1 = k1 + l1γ, p0 = k0 + l0γ

q4 = δp, q3 = (m3+γ+δ)p, q2 = (m2δ+n2γδ), q1 = (m1+n1γδ)p, q0 = (m0+n0γδ)p

Proposition 4.4.2. The endemic equilibrium point P ∗ is locally asymptotically

stable (LAS) for τ2 < τ20 where τ20 is the minimum positive value of

τ̄20 = 1
w20

arccos

 (p2w2
20
−p4w4

20
−p0)(q4w4

20
−q2w2

20
+q0)+(q3w3

20
−q1w20))(p3w3

20
−w5

20
−p1w20 )

pγδ

(
(q4w4

20
−q2w2

20
+q0)2−(q1w20−q3w

3
20

)2

)  .

Proof. Let λ = iw, w > 0 be a root of equation (4.23) to obtain
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P (λ, τ2) = w5i+ p4w
4− p3w

3i− p2w
2 + p1wi+ p0 + (q4w

4− q3w
3i− q2w

2 + q1wi+

q0)pγδe−iwτ2 .

Using Euler expansion, separating real and imaginary parts, we obtain

pγδ((q4w
4 − q2w

2 + q0) coswτ2 + (q1w − q3w
3) sinwτ2) = p2w

2 − p4w
4 − p0,

pγδ((q1w − q3w
3) coswτ2 + (q4w

4 − q2w
2 + q0) sinwτ2) = p3w

3 − w5 (4.24)

− p1w.

Eliminating τ2 from equation (4.25), by squaring and adding these two equations

and put w2 = z, we obtain the Hopf frequency below

z5 + A4z
4 + A3z

3 + A2z
2 + A1z + A0 = 0, (4.25)

with coefficients in (4.25) in Appendix A3(c).

Let’s denote g(z) = z5 +A4z
4 +A3z

3 +A2z
2 +A1z+A0. Since limz→+∞ g(z) = +∞

and A0 < 0, then equation (4.25) has at least one positive root. Assuming equa-

tion (4.25) has ñ positive roots, given by ñ(1 ≤ ñ ≤ 5), denote by z1 < z2 < . . . zñ),

respectively. Then, equation (4.25) has ñ positive roots if

w1 =
√
z1, w2 =

√
z2, . . . , wñ =

√
zñ.

From (4.25), the corresponding τ2n > 0, for which the characteristic equation (4.13)

has a pair of purely imaginary roots eliminating sinwτ2 from the first and second

equations (4.25) and making cos(wτ2) the subject we get

cos(wτ2) =
(p2w

2 − p4w
4 − p0)(q4w

4 − q2w
2 + q0) + (q3w

3 − q1w)(p3w
3 − w5 − p1w)

(q4w4 − q2w2 + q0)2 + (q3w3 − q1w)(q1w − q3w3)pγδ
.
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Thus, denoting

τ
(k)
2n =

1

wn
arccos

(
(p2w

2
n − p4w

4
n − p0)(q4w

4
n − q2w

2
n + q0)

(q4w4
n − q2w2

n + q0)2 + (q3w3
n − q1wn)(q1wn − q3w3

n)pγδ

)
+

1

wn
arccos

(
(q3w

3
n − q1wn)(p3w

3
n − w5

n − p1wn)

(q4w4
n − q2w2

n + q0)2 + (q3w3
n − q1wn)(q1wn − q3w3

n)pγδ

)
+

2π(k − 1)

wn
, (4.26)

where

n = 1, 2, . . . ñ, k = 1, 2, . . . , then ±iwn are a pair of purely imaginary roots of

the equation (4.13). This allows us to define the Hopf–bifurcation threshold time

delay value as

τ20 =
1

w20

arccos

 (p2w
2
20
− p4w

4
20
− p0)(q4w

4
20
− q2w

2
20

+ q0)

pγδ
(

(q4w4
20
− q2w2

20
+ q0)2 − (q1w20 − q3w3

20
)2
)


+
1

w20

arccos

 (q3w
3
20
− q1w20)(p3w

3
20
− w5

20
− p1w20)

pγδ
(

(q4w4
20
− q2w2

20
+ q0)2 − (q1w20 − q3w3

20
)2
)
(4.27)

This completes the proof.

Proposition 4.4.3 If conditions

5w4
20

(q1 +2q2w20)+(3p3w
2
20

+p1)(3q3w
2
20

+4q3w
3
20

) > 5w4
20

(3q3w
2
20

+4q4w
3
20

)+(q1 +

2q2w20)(3p3w
2
20

+ p1),
q3w2

20

q1
> 1,

w4
20
q4+q0

q2w2
20

> 1 hold, such that Φ1(w20) > 0, then

system (4.1) undergoes a Hopf–bifurcation at the endemic equilibrium point as τ2

increases through τ20, where expressions of Φ1(w20) satisfies equation (4.30) .

Proof. In order to establish whether the endemic equilibrium point P ∗ actually

under goes a Hopf–bifurcation at τ2 = τ20 , we let λ(τ2) = β(τ2) + iw(τ2) be a root

of equation (4.13) near τ2 = τ
(k)
20

and β(τ2)
(k) = 0, as w(τ2)

(k) = w20 . Making a

substitution into the L.H.S of equation (4.13) and taking a derivative with respect
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to λ, we have

dτ2

dλ
=

(5λ4 + 4p4λ
3 + 3p3λ

2 + 2p2λ+ p1)eµλτ2

(q4λ5 + q3λ4 + q2λ3 + q1λ2 + q0λ)pγδ
+

(4q4λ
3 + 3q3λ

2 + 2q2λ+ q1)

pγδ(q4λ5 + q3λ4 + q2λ3 + q1λ2 + q0λ)

− τ2

λ
. (4.28)

Computing the sign of d[Re(λ)]
dτ2

, from the characteristic equation (4.13) and solv-

ing (4.28) at τ2 = τ20 with λ = iw20 and expressing sin(w20τ20) and cos(w20τ20),

we obtain sign
[

d(Reλ)
dτ2

]
τ2=τ20

= sign
[
Re( dλ

dτ2
)−1
]
λ=iw20

,

= sign
[
Re

f1 cos d0 + f2 sin d0

g1 + ig2

+ Re
i(f3 cos d0 + f4 sin d0)

(g1 + ig2)
+ Re

f5
g1 + ig2

− Re
τ2

iw20

]
,

= sign
[
Re

g1(f1 cos d0 + f2 sin d0)− ig2(f1 cos d0 + f2 sin d0)

g2
1 + g2

2

]
+

sign
[
Re

g2(f2 cos d0 + f4 sin d0) + ig1(f3 cos d0 + f4 sin d0)

g2
1 + g2

2

]
+sign

[
Re

f5g1

g2
1 + g2

2

]
, (4.29)

with coefficients in Appendix A3(d).

With linear combination of a sine and cosine of equal periods being equal to a

single sine with the same period, equation (4.29), gives

sign
[g1(

√
f2
1 + f2

2(sin(d0 + Ψ0))) + g2

√
f2
2 + f2

4(sin(d0 + Ψ1)) + f5g1

g2
1 + g2

2

]
,

with Ψ0 = arctan f1

f2
, Ψ1 = arctan f2

f4
and f2 6= 0, f4 6= 0.

Let

Φ1(w20) = g1

√
f 2

1 + f 2
2 (sin(d0 + Ψ0)) + g2

√
f 2

2 + f 2
4 (sin(d0 + Ψ1)) + f5g1.(4.30)
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If Φ1(w20) > 0, with (d0 + Ψ{i=0,1}) ∈ (π, π
2
], then sign

[
d(Reλ)

dτ2

]
τ2=τ20

> 0, hence

the transversality condition holds and the system undergoes Hopf–bifurcation.

4.5.3 Delay in latent period and seeking medical care ( τ1 =

τ2 = τ > 0)

Making a substitution of τ1 = τ2 = τ in equation (4.13), we get

g(λ, e−λτ ) = λ5 + k4λ
4 + k3λ

3 + k2λ
2 + k1λ+ k0

+((s4)λ4 + s3λ
3 + s2λ

2 + s1λ+ s0)e−λτ

+(s′3λ
3 + s′2λ

2 + s′1λ+ s′0)e−2λτ = 0. (4.31)

with s4 = (γ + δ)e−µτ , s3 = (γl3 + m3δ)e
−µτ , s2 = (l2γ + m2δ)e

−µτ , s1 = (l1γ +

m1δ)e
−µτ ,

s0 = (l0γ + m0δ)e
−µτ , s′3 = (γδ)e−2µτ , s′2 = n2δγe

−2µτ , s′1 = n1γδe
−2µτ , s′0 =

n0γe
−2µτ .

In order to examine whether or not the endemic equilibrium loses stability and

undergoes Hopf–bifurcation as an outcome with inclusion of the time delays,

a pair of purely imaginary root of the transcendental equation (4.31) is found.

Suppose the pair of the imaginary root is given as λ = iv with infection rate

oscillation frequency ( v > 0), using Euler’s expansion and making a substitution

into equation (4.31), separating real and imaginary parts, we obtain

g0 cos vτ + g1 sin vτ + g2 sin 2vτ = G1, (4.32)

−g1 cos vτ + g0 sin vτ + g3 sin 2vτ = G2. (4.33)
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where g0 = s1v − s3v
3, g1 = s2v

2 − s4v
4 − s0, g2 = s2v

2, g3 = s′3v
3 + s′1v,

G1 = v5 + (k3 + s3 + s′3)v3 − (k1 + s′1)v,G2 = (k2 + s′2)v2 − (k4v
4 + k0 + s′0).

Squaring and adding equation (4.32) and (4.33), we get following equation

g2
0 + g2

1 −G2
1 −G2

2 = −1

2
(g2

2 + g2
3)(1− cos 4vτ). (4.34)

suppose ‖ cos 4vτ‖ < 1, equation (4.34) leads to

G2
1 +G2

2 − (g2
0 + g2

1) = 0, (4.35)

which reduces to

v10 + (2(k3 + s3 + s′3) + k2
4 − s2

4)v8 + ((k3 + s3 + s′3)2

+2(k1 + s′1)− 2k4(k2 + s′2) + 2s2s4 − s2
3)v6

+(2(k1 + s′1)(k3 + s3 + s′3) + 2k4(k0 + s′0) + 2s1s3 − (s2
2 + 2s0s4))v4

+((k1 + s′1)2 + 2s0s2 − 2(k2 + s′2)(k0 + s′0)− s2
1)v2 + (k0 + s′0)2 = 0. (4.36)

Let z = v2 such that we obtain equation (4.36) in terms of z

L(z) = z5 + u4z
4 + u3z

3 + u2z
2 + u1z + u0, (4.37)

with u4 = 2(k3 + s3 + s′3) +k2
4− s2

4, u3 = (k3 + s3 + s′3)2 + 2(k1 + s1
1)−2k4(k2 + s1

2) +

(2s2s4 − s2
3), u2 = 2(k1 + s′1)(k3 + s3 + s′3) + 2k4(k0 + s′0) + 2s1s3 − (s2

2 + 2s0s4),

u0 = (k0 + s′0)2u1 = (k1 + s′1)2 + 2s0s2 − 2(k2 + s′2)(k0 + s′0)− s2
1.

Since equation (4.37), has a high degree polynomial we compute the eigenvalues

numerically by using parameter values in Table 4.1. The resulting polynomial is

z5 − 295.18z4 − 130.18z3 + 92.52z2 − 0.15038z + 2.6× 10−12 = 0.

Therefore, the following eigenvalues are obtained
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z1 = 295.62, z2 = 0, z3 = 0.001629, z4 = 0.38024, z5 = −0.8212.

We observe that there is only one negative real root which does not guarantee sta-

bility of model (4.1) in the presence of time delays τ = τ1 = τ2 > 0, thus by Lemma

4.4.2 there exists a pure imaginary root wc such that a critical time delay τc is

achieved for which there is death or birth of period oscillations (Hopf–bifurcation).

Equation (4.34) yields

τc =
1

4v0

arccos

(
g2

2 + g2
3 + 2(g2

0 + g2
1 − (G2

1 +G2
2))

g2
2 + g2

3

)
+
jπ

2v0

; j = 0, 1, 3, . . .(4.38)

with λ = iv (a purely imaginary root of equation (4.31)), if condition g2
0 + g2

1 =

G2
1 + G2

2 and τ ∈ [0, τc) holds. Without loss of generality, let v0 represent the

value v0 corresponding to τc. We thus state the result below:

Proposition 4.4.4 If condition g2
0 + g2

1 = G2
1 +G2

2 holds, then the chronic steady

state P ∗ is locally asymptotically stable for τ ∈ [0, τc), unstable when τ > τc and

undergoes a Hopf–bifurcation.

4.6 Model results and discussion

Here, MATLAB dde23 function is used to obtain numerical simulations of

model (4.1). Parameter values in Table 4.1 are used in the simulation. The

positive endemic equilibrium is P ∗ = (S∗, V ∗, E∗, C∗, I∗) = (2099, 6, 54, 2, 100). In

the absence of delays τ1 = τ2 = 0, the characteristic polynomial equation (4.14) is

λ5 + 0.7364λ4 − 148.4007λ3 − 4.9408λ2 − 0.3965λ− 0.0001806.

The corresponding eigenvalues are: λ1 = 11.8366, λ2 = −0.000472, λ3 = −12.5357,

λ4,5 = −0.01641 ± 04885i. Therefore, since the eigenvalues have one positive
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Table 4.1: Parameter values

Parameter value/unit Source

b 22 day−1 estd

ν 2.53× 10−5 (Sutton et al., 2007)

γ 3.3333× 10−1 day −1 assumed

µ 2.0547× 10−3 estd

δ 3.3× 10−1 day −1 (Ngari et al., 2016)

ρ 1.096× 10−2 day−1 (Ngari et al., 2014)

φ 3.5714× 10−2day−1 (Melegaro et al., 2010)

ζ 5.4794× 10−4day−1 (Melegaro et al., 2010)

ϑ 0.54 (Lindstrand, 2016)

β 1.0102× 10−4 day−1 assumed

τ1 1–3 days (White et al., 2009)

τ2 2 days (Källander et al., 2008)

root and four negative roots, the endemic equilibrium changes state of stability

from unstable to stable thus under goes a Hopf–bifurcation ( see Figure 4.3).

This implies that as time approaches infinity, the partial populations are sta-

ble and pneumococcal pneumonia can no longer cause harm to individuals.

The numerical simulation of equation (4.15) yields the characteristic roots as:

λ1 = 0, λ2 = 14.4621i, λ3 = −14.4416,

λ4 = ±0.00041 + 0.3771i, λ5 = ±0.0579 + 0.1335i. As τ1 increase from zero, there

is a value τ10 > 0 such that the endemic equilibrium is stable for τ1 ∈ [0, τ10 ]

and unstable for τ1 > τ10 . At this critical value, the endemic equilibrium loses
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(a) (b)

(c) (d)

Figure 4.3: (a& b) Stability of the endemic equilibrium showing Hopf–bifurcation,
with initial variables: S(0) = 5586, V (0) = 22, C(0) = 64, I(0) = 11, E(0) = 100.
(c& d) The evolution of the infected, the susceptible and corresponding I-S
portrait and 3-D phase trajectories, (with R0 = 15.4, Ru

0 = 15.14, Rv
0 = 0.271

parameters:µ = 2.0547 × 10−4, φ = 3.574 × 10−2. The rest of the parameters
remain fixed as in Table 4.1.

stability and Hopf–bifurcation arises. The real positive root is w10 = 14.4621 and

the critical time delay τ10 = 0.109 of a day ≈ 3 hrs.

Figure 4.4 shows the evolution of the susceptible and infected population of

system (4.1). The low and high peaks in the number of susceptible and infected

individuals indicate the season peak of the disease. If τ1 < τ10 = 0.109 of a day

≈ 3 hrs, the partial populations of the susceptible and the infected are stable

whereas if τ1 > τ10 = 0.109 of a day ≈ 3hrs, the populations are unstable and

it’s hard to predict the future pattern of the disease prevalence. The numerical

computation of equation (4.23) yields eigenvalues λ1 = 0, λ2 = 0.06508i, λ3 =

−0.06522, λ4 = −12.038, λ = −12.3263.
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(a) (b)

(c)

Figure 4.4: Simulation of model (4.1) for τ2 = 0 and τ1 > 0, with initial variable
values: (S(0), V (0), E(0), C(0), I(0)) = (3280, 30, 10, 10, 100). The rest of the
parameters are as in Table 4.1.

The positive root w20 = 0.06508 and the critical time delay τ20 = 26 days, hence

system (4.1) is stable for τ2 < 26 days and unstable for τ2 > τ20 . A characteristic

polynomial (4.31) corresponding to two delays is solved to give the eigenvalues

as; λ1 = 0, λ2 = −17.1963, λ3 = −0.6166, λ4 = −0.04036, λ5 = 0.9026i, the real

positive root wc = 0.9062 and the critical time delay τc = 2.069 days.

Figure 4.5 depicts the time series solution approaching their equilibrium point

as time approaches infinity. This confirms the stability of the system when the

value of time delay is less than τc = 2.069 days and instability of the system if

τ > τc = 2.069 days (see Proposition 4.5.3).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Stability of the endemic equilibrium P ∗ for τ1 = τ2 = 2 days. The rest
of the parameters are as in Table 4.1.

To explore the effect of time delay τ2 on pneumococcal pneumonia, we fix

time delay τ1 = 3 days, and the parameter τ2 is varied (Figure 4.6). The rate
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(a) (b)

(c) (d)

(e)

Figure 4.6: The effect of varying τ2 on the dynamics of model (4.1). The delay τ2

was chosen as τ2 = 2.5, 3, 3.5. All other parameters remain as stated in Table 4.1.

of convergence to stability of the endemic equilibrium point is attained with

a reduction in the delay and a divergence is due to an increase in the delay

that results into instability of the system. This gives rise to Hopf–bifurcation

phenomenon.
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(a) (b)

(c) (d)

(e)

Figure 4.7: The effect of varying time delay τ1 on the dynamics of model (4.1).
The delay τ1 was chosen as τ1 = 0.5, 2, 8.5. All the parameter values are the same
as in Table 4.1.

In Figure 4.7, time delay τ2 is fixed at 2 days in order to study the effect

of time delay τ1 on model (4.1). We observe an increase in the magnitude of

the amplitude of oscillations as τ1 increases, thus divergence from the endemic

equilibrium occurs leading to unstable state. This implies that the disease will

persist in the population with increased delays if there is no intervention instituted

to reduce the delays. On the other hand a decrease in τ1 guarantees the asymptotic

stability of the endemic equilibrium which implies the disease can be eradicated
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from the population.

In this Chapter, a mathematical model to study the effect of two time delays

on the dynamics of pneumococcal pneumonia with vaccination is analyzed. The

results show that, without delays (τ1 = τ2 = 0), the disease–free equilibrium P0 is

locally asymptotically stable if the control reproductive ratio R0 < 1, whenever

conditions (µ+ ζ)(µ+ ν) > ζν and Rv
0 < 1 hold, and unstable if R0 > 1.

The results revealed that the endemic equilibrium is locally stable without de-

lays and stable if the delays are under conditions. The transversality conditions

for the existence of Hopf–bifurcation are stated and proved for three cases; (1)

τ1 = 0, τ2 = τ > 0, (2) τ1 = τ > 0, τ2 = 0 and (3) τ1 = τ2 = τ > 0. Critical values

at which Hopf–bifurcation occur have been obtained. The results show that at

critical values τ10 = 0.109 ≈ 3 hrs, τ20 = 26 days and τc = 2.069 days, the endemic

equilibrium losses stability.

Basing on the numerical simulations obtained, we found out that when τ1 , τ2 are

below the critical values τ10 and τ20 respectively, model (4.1) is asymptotically

stable. Which implies that the number of individuals in the five subpopulations

will be in ideal equilibrium and prevalence of pneumococcal pneumonia can easily

be controlled. Conversely, if the value of the delays τ1, τ2 are greater than the

critical values τ10 and τ20 respectively, a Hopf–bifurcation arises this phenomenon

suggests persistent of pneumococcal pneumonia in the population. The number

of individuals will fluctuate periodically, this is not helpful, effort should be put

to control such a phenomenon.

We note that longer time delays destabilize the system and give rise to Hopf–bifurcations.

This explains the oscillatory seasonal change of pneumococcal pneumonia disease
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in human population whose immune systems are weak. Therefore, measures to

reduce delays in latent and seeking medical care during pneumococcal pneumonia

epidemic should be prioritized.

In the next Chapter, the effects of antibiotic resistance awareness and saturated

treatment in the dynamics of pneumococcal pneumonia are discussed. Individuals

have limited knowledge about antibiotic resistance during pneumococcal pneu-

monia treatment that has led to relapse of the disease and increased death in

children below 5 years of age and the elderly.
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CHAPTER 5

MODELING EFFECTS OF ANTIBIOTIC

RESISTANCE AWARENESS AND

SATURATED TREATMENT OF

PNEUMOCOCCAL PNEUMONIA

5.1 Introduction

Antibiotic resistance is a major world wide threat to the provision of safe and

effective health care. Evidence for treatment failures of antibiotic–resistant to

pneumococcal pneumonia has been more difficult to document Schrag et al. (2001)

and this limits developments in the control of the disease. Misuse of antimicrobials

in developing countries is aided by their availability over the counter, without

prescription and through unregulated supply chains (Ayukekbong et al., 2017).

In this Chapter, a model of pneumococcal pneumonia with antibiotic resistance

awareness and saturated treatment is developed and analyzed in an attempt to

reduce the incidence of pneumococcal pneumonia in humans.

5.2 Model formulation

The total population under consideration is N(t), comprising four classes with

the susceptible and infectious each partitioned into two. The susceptible class

consists of; the aware individuals Sa(t) that have had a chance to attend the
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available antibiotic resistance awareness programs, and the unaware individuals

Su(t) that have never heard of the prevailing programs or have heard of the exist-

ing programs but have not responded. The infectious class consists of; infected

individuals receiving treatment I(t), and infected individuals but resistant to first

line treatment R(t).

Thus unaware class is increased through a constant recruitment B and fading

of information of aware individuals at a rate ξ. The Infection is spread through

the interaction of infected and susceptible individuals. Considering a reduced

incidence rate of the form, g(I) = (βI − β1mI
m+I

), where m > 0 is the effect of media

coverage on the contact transmission, β > 0 is the maximal effective contact rate

before awareness and β1 > 0 is the maximal reduced effective contact rate due

to media alert in the presence of infective individuals. The transmission term

has been considered because in real life, every individual will take precaution to

protect themselves from infections as sooner as infected individuals with antibiotic

resistant bacteria have been identified/reported in a wholly susceptible population

which will reduce the disease spread. Again, with the rate of media awareness

impact in both the numerator and denominator because infected individuals have

to constantly be educated/reminded of proper prevention and control measures

even after correct treatment has been administered. The fact that the coverage re-

port about antibiotic resistance against existing treatment doesn’t prevent spread

of disease completely then β ≥ β1 > 0. The unaware individuals transfer to the

aware class after receiving information through private individuals at a rate υ.

The transmission rate in this model is a bilinear incidence term β2SaI with

β2 > 0, is the contact rate between aware individuals and infected individuals.

The infected class, is increased through the relapse of resistant individuals at

a rate γ. It is assumed that infected individuals upon receiving the first line
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of treatment tend not to complete the prescribed medication and develop resis-

tant bacteria that may require costly treatment to be eliminated. A saturated

treatment is considered because there exist delays in administering treatment by

infected individuals and the medical resources may be limited. Suppose treatment

to infected individuals is administered at a rate φ, and is either cleared of the

pneumococcus or acquires resistance. Modifying the saturated treatment proposed

in Zhang & Liu (2008) by incorporating, τ = 1
1+φD

which describes the effect of

infected individuals delaying to seek treatment, where D is the number of days

delayed in taking treatment (Obolski et al., 2015). Thus the saturated treatment

we use in our model is of the form T (I) = φI
1+τI

. However, if τ = 0, the saturated

treatment function becomes linear, that is T (I) ≈ φI, if the number of infected

individuals is minimal T (I) ≈ 0, and if the number of infected individuals grows

large, T (I) ≈ φ. The probability of acquiring resistance to first line treatment is

p. Finally the rate of resistance acquisition upon treatment with the antibiotic is

pφ, and a fraction of infected individuals respond to treatment and recover from

the disease, thus transfer to the aware class with a clearance rate (1− p)φ.

Individuals who are treated incorrectly or individuals who do not take the right

dose at the prescribed time become resistant to first line treatment and a correct

treatment is administered after a delay period τ . Descriptions of state variables

and epidemiological parameters are summarized in the nomenclature.

5.3 Model assumptions

The assumptions of the model are stated:

(i) All new recruitments (through birth and immigrants) are unaware.

(ii) Aware susceptible individuals transfer to unaware susceptible class due to
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loss of memory or social factors.

(iii) Antibiotic resistance awareness is disseminated by private individuals and

the media at rates υ and m respectively.

(iv) Antibiotic resistance is gained through mutations, due to exposure to an-

tibiotics (Daşbaşı & Öztürk, 2016).

(v) The maximal effective contact rate before awareness to be greater than the

maximal reduced contact rate due to the alert in the presence of infective

individuals

(vi) Infected individuals are immediately treated with first line of treatment.

(vii) All subpopulations are decreased by a natural mortality rate µ.

With the assumptions, variables, parameters and the transition diagram in Fig-

ure 5.1, our proposed model for the dynamics of pneumococcal pneumonia is

governed by the system of nonlinear ordinary differential equations got by apply-

ing the balance law of compartments stated as: rate of change=inflow transition

rate−outflow transition rate that is: Ẋ = sum of inflow transition rates− sum of

outflow transition rates.

Ṡu = B + ξSa − (g(I) + υI + µ)Su,

Ṡa = υISu + (1− p)ΦT (I)− (β2I + ξ + µ)Sa, (5.1)

İ = g(I)Su + β2SaI + γR− ΦT (I)− (µ+ δ)I,

Ṙ = pΦT (I)− (γ + µ)R.

where

T (I) = I
1+τI

and g(I) = (βI − β1
mI
m+I

),

with initial conditions: Su(0) = Su0 ≥, Sa(0) = Sa0 ≥ 0,
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Su R

Sa I

µSu

B

µR

µSa (µ+ δ)I

υSuIξSa γR pΦT (I)g(I)Su

β2ISa

(1− p)ΦT (I)

Figure 5.1: A transition diagram showing the dynamics of pneumococcal pneumo-
nia,
with T (I) = I

1+τI
, g(I) = (βI − β1mI

m+I
).

I(0) = I0 ≥ 0, R(0) = R0 ≥ 0. Since model (5.1), describes human populations,

all state variables and parameters are assumed positive for all t ≥ 0.

Building on a mathematical model developed by Kizito & Tumwiine (2018), new

compartments of susceptible and infective have been incorporated. Sub–dividing a

compartment of susceptible into: aware individuals, unaware individuals; and the

infectious into: infected individuals receiving treatment, and infected individuals

resistant to first line treatment. A relapse of resistant individuals, a modified

saturated treatment and a reduced disease transmission rate with the effect of

antibiotic resistance awareness through media are also added.
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5.3.1 Positivity of solution trajectories in model (5.1)

Lemma 5.2.1. Solutions of model (5.1) with initial conditions Su(0) = Su0 ≥

, Sa(0) = Sa0 ≥ 0, I(0) = I0 ≥ 0 and R(0) = R0 ≥ 0 are always non–negative for

all t ≥ 0.

Proof. Suppose Su(t), Sa(t), I(t), R(t) are solutions to model (5.1), then from the

first equation of model (5.1), we have

dSu
dt

= B + ξSa − g(I)Su − υISu − µSu ≥ −(g(I) + υI − µ)Su. (5.2)

By using the technique of separation of variables we have

Su(t) ≥ Su0 exp(−(µt+

∫ t

0

(g(I(θ)) + νI(θ))dθ)) ≥ 0. (5.3)

Therefore, the solution of Su(t) in equation (5.3) is non–negative for all t ≥ 0.

Applying the same technique to the remaining variables of model (5.1) we get

Sa(t) ≥ Sa0 exp(−(ξ + µ) +

∫ t

0

β2I(θ)dθ) ≥ 0,

I(t) = I0 exp(−(µ+ δ)t) ≥ 0 (5.4)

and

R(t) ≥ R0 exp(−(γ + µ)t) ≥ 0. (5.5)

Therefore, all solutions of Sa(t), I(t) and R(t) in equations (5.4) and (5.5) are

non–negative for all times t ≥ 0. This completes the proof.
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5.3.2 Invariant region

Here we obtain a region in which the solution of model (5.1) is bounded. For this

model the total population is N = Su + Sa + I +R, such that the rate of change

of the total population is

dN

dt
= B − µN − δI, (5.6)

dN

dt
≤ B − µN. (5.7)

Equation (5.7) corresponds to instances of no pneumococcal pneumonia related

death. Therefore, we obtain

N ≤ N0e
−µt +

B

µ
(1− e−µt). (5.8)

where, N0 = Su0 + Sa0 + I0 +R0.

Thus, from equation (5.8) we have

N(t) ≤ max(N0,
B

µ
) (5.9)

Then, 0 ≤ Su + Sa + I +R ≤ B
µ
.

This implies that the region D = {(Su, Sa, I, R) ∈ R4
+: Su + Sa + I + R =

N ≤ B
µ
}, which implies N(t) is a bounded, and so are Su, Sa, I and R.

5.3.3 Existence and uniqueness of the steady states

From model (5.1), equating the right hand side to zero. The Proposition 5.3.1

shall represent the existence and uniqueness of the endemic steady state.

Proposition 5.3.1. If conditions (γ + µ)(µ+ δ) > Φ(γ(p− 1)− µ), B > I∗d,
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(υI∗ + µ)(β2I
∗ + ξ + µ) > υI∗(β2I

∗ + ξ) and (Φ + µ + δ)(γ + µ) > pΦγ hold,

then model (5.1) will admit a unique endemic steady state, E∗ = (S∗u, S
∗
a, I
∗, R∗)

if R0 > 1.

Proof. Suppose E∗ = (S∗u, S
∗
a, I
∗, R∗) is a steady state of model (5.1) satisfying

the system below

B + ξS∗a − (g(I∗) + υI∗ + µ)S∗u = 0,

υI∗S∗u + (1− p)ΦT (I∗)− (β2I
∗ + ξ + µ)S∗a = 0, (5.10)

g(I∗)S∗u + β2S
∗
aI
∗ + γR∗ − ΦT (I∗)− (µ+ δ)I∗ = 0,

pΦT (I∗)− (γ + µ)R∗ = 0.

From equation (5.10) it follows that if we let I∗ = R∗ = 0 then we have the

disease–free steady state E∗0 = (S0
u, S

0
a, I

0, R0) = ( ξ+µ
υ
, Bυ−µξ−µ

2

µυ
, 0, 0) that exist

for all epidemiological parameter values.

On the other hand, if I∗ 6= 0, R∗ 6= 0, then we have the endemic steady state

E∗ = (S∗u, S
∗
a, I
∗, R∗),

where

S∗u =
(1 + τI∗)2(β2I

∗ + ξ + µ)(B − I∗d) + (β2I
∗ + ξ)(1− p)ΦI∗

K(1 + τI∗)
,

S∗a =
υI∗(1 + τI∗)2(B − I∗d) + (1− p)ΦI∗(υI∗ + µ)

K(1 + τI∗)
,

R∗ =
pΦI∗

(γ + µ)(1 + τI∗)
,

I∗ = I∗+ =
−r1 +

√
(r2

1 − 4r2r0)

2r2

,

with

r0 = m(β − β1)S∗u +m( γΦp
γ+µ

+ Φ)− (µ+ δ),

r1 = (β + τm(β − β1))S∗u + τ(β − β1)m+ γpΦ
γ+µ

+ φ− (µ+ δ)(1 + τm),
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r2 = τ(βS∗u − (µ+ δ))

d = (γ + µ)((γ + µ)(µ+ δ)− Φ(γ(p− 1)− µ)),

K = (υI∗ + µ)(β2I
∗ + ξ + µ)− υI∗(β2I

∗ + ξ)).

Therefore, there exists a unique endemic steady state E∗ provided conditions

(γ+µ)(µ+δ) > Φ(γ(p−1)−µ), B > I∗d, (υI∗+µ)(β2I
∗+ξ+µ) > υI∗(β2I

∗+ξ)),

r1 < 0, r2 > 0 and r0 < 0 hold. This completes the proof.

5.3.4 The basic reproductive number

Computing the basic reproduction number, R0 for model (5.1) by the method

introduced by Van den Driessche and Watmough Van Den Driessche & Watmough

(2002) according to which R0 = ρ(FV −1), where ρ is the spectral radius of a

matrix (the maximum eigenvalue obtained from the matrix). Let F and V be

vectors representing new infections and remaining transfer terms respectively

F =


g(Su, I) + β2SaI

0

 ,V =


ΦT (I) + (µ+ δ)I − γR

(γ + µ)R− pΦT (I)

 . (5.11)

The infected compartments are I and R, at disease–free steady state we

obtain matrix Jacobian’s F for F and V for V from (5.11) to have

F =


(β − β1)S0

u + β2S
0
a 0

0 0

 , V =


Φ + µ+ δ −γ

−pΦ γ + µ

 , (5.12)
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Thus, the next generation matrix for model (5.1) is evaluated as

FV −1 =


((β−β1)S0

u+β2S0
a)(γ+µ)

(Φ+µ+δ)(γ+µ)−pγΦ
((β−β1)S0

u+β2S0
a)γ

(Φ+µ+δ)(γ+µ)−pγΦ

0 0

 . (5.13)

Therefore, making substitutions of Su0 and S0
a, the basic reproduction number

for model (5.1) is

R0 = ρ(FV −1) =
(γ + µ)

(
(β − β1) ξ+µ

υ
+ β2(Bυ−µξ−µ2)

µυ

)
(Φ + µ+ δ)(γ + µ)− pΦγ

. (5.14)

5.3.5 Local stability behavior of the disease–free steady

states

Proposition 5.3.2. If condition Φ + µ + δ) > pΦγ hold, then the disease–free

steady state E∗0 is locally asymptotically if R0 < 1 and unstable for R0 > 1.

Proof. The Jacobian matrix of model (5.1) at E∗0 is given as

J(E0) =



−µ ξ J13 0

0 −(ξ + µ) J23 0

0 0 J33 γ

0 0 pΦ −(γ + µ)



. (5.15)
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with

J13 = −(β − β1 + υ)(ξ + µ)

υ
,

J23 =
((1− p)Φ + υ)(ξ + µ)

υ
− β2(Bυ − µξ − µ2)

µυ
,

J33 =
(β − β1)(ξ + µ)

υ
+
β2(Bυ − µξ − µ2)

µυ
− (Φ + µ+ δ).

The characteristic polynomial of the matrix in (5.15) is given by

|J(E0)− λI| = λ4 +m3λ
3 +m2λ

2 +m1λ+m0 = 0. (5.16)

where m3 = (β1−β)(ξ+µ)
υ

+ (4µ+ φ+ δ + γ + ξ)− β2(Bυ−µξ−µ2)
µυ

,

m2 = (ξ+µ)
(

(β1−β)(ξ+µ)
υ

− β2(Bυ−µξ−µ2)
µυ

+(Φ+µ+δ)+(γ+µ)
)

+µ
(

(ξ+µ)+(β1−
β(ξ+µ)

υ
− β2(Bυ−µξ−µ2)

µυ
+(Φ+µ+δ)+(γ+µ)

)
+
(
γ+µ)

(
(β1−β)(ξ+µ)

υ
− β2(Bυ−µξ−µ2)

µυ
+

(Φ + µ+ δ)
)
− γpΦ

m1 = µ
(

(ξ+µ)(β1−β)(ξ+µ)
υ

− β2(Bυ−µξ−µ2)
µυ

+ (Φ + µ+ δ) + (γ + µ)
)

+(γ + µ)(ξ + µ)
(

(β−β1)(ξ+µ)
υ

+ β2(Bυ−µξ−µ2)
µυ

− (Φ + µ+ δ)
)
− γpΦ,

m0 = −(ξ + µ)µ
(

(γpΦ + γ + µ)
(

(β−β1)(ξ+µ)
υ

+ β2(Bυ−µξ−µ2)
µυ

− (Φ + µ+ δ)
))

.

Therefore, the characteristic roots determined from polynomial equation (5.16)

are

λ1 = −µ, λ2 = −(ξ + µ), λ3 = −
(
f
2

+ (γ+µ)
2

+

√
(f2+2f(γ+µ)+4pγΦ)

2

)
,

λ4 = −
(
f
2

+ (γ+µ)
2
−
√

(f2+2f(γ+µ)+4pγΦ)

2

)
.

with

f = (β−β1)(ξ+µ)
υ

+ β2(Bυ−µξ−µ2)
µυ

− (Φ + µ+ δ).

Since all eigenvalues computed from polynomial equation (5.16) are negative,

f
2

+ (γ+µ)
2

>

√
(f2+2f(γ+µ)+4pγΦ)

2
, implying that

(γ+µ)

(
(β−β1)(ξ+µ)

υ
+
β2(Bυ−µξ−µ2)

µυ

)
(γ+µ)(Φ+µ+δ)−pΦγ < 1,

hence if condition Φ+µ+δ) > pΦγ hold, thenR0 =
(γ+µ)

(
(β−β1)(ξ+µ)

υ
+
β2(Bυ−µξ−µ2)

µυ

)
(γ+µ)(Φ+µ+δ)−pΦγ <

1, that is: R0 < 1 implies that λ4 < 0. Thus E∗0 is locally asymptotically stable.
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Further, if R0 > 1 then λ4 > 0 which implies E∗0 is unstable. This completes the

proof.

5.3.6 Local stability of endemic steady state

Proposition 5.3.4. Suppose condition (υI∗ + µ)(β2I
∗ + ξ + µ) > υI∗(β2I

∗ + ξ)

holds, then the endemic steady state E∗ of model (5.1) is locally asymptotically

stable in D for R0 < 1.

Proof. The variational matrix at E∗ is given by

J(E∗) =



a ξ c 0

υI∗ e f 0

g β2I
∗ h γ

0 0 l −(γ + µ)



. (5.17)

where a = −(βI∗ − β1mI∗

m+I∗
+ υI∗ + µ), f = −((p − 1)Φ − υS∗u + β2S

∗
a, e =

−(β2I
∗ + ξ + µ),

c = −(β − β1m2

(m+I∗)2 + υ)S∗u, g = (βI∗ − β1mI∗

(m+I∗)
)S∗u, l = pΦ

(1+τI∗)2 ,

h = β2S
∗
a + (β − β1m2

(m+I∗)2 )S∗u − Φ
(1+τI∗)2 − (Φ + µ+ δ).

The characteristic equation associated to the variational matrix (5.17) is given by

|J(E∗)− λI| = λ4 + b3λ
3 + b2λ

2 + b1λ+ b0 = 0. (5.18)
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with b3 = −(a+ e+ h− (γ + µ)),

b2 = h
(
a+ e

)
− (γ + µ)

(
h+ a

)
+ e
(
a− (γ + µ)

)
−
(
fβ2I

∗ + ξυI∗ + γl + cg
)
,

b1 = cg
(
e− (γ + µ)

)
+ fβ2I

∗
(
a− (γ + µ)

)
+
(
a+ e

)(
γl+ h(γ + µ)

)
+
(
h− (γ +

µ)
)(
ξυI∗ − ae

)
−
(
ξfg + cυβ2I

∗2
)
,

b0 = −β2I
∗(γ+µ)

(
cυI∗−af

)
−g(γ+µ)

(
ξf−ce

)
+γl

(
ξυI∗−ae

)(
γl+h(γ+µ)

)
.

Evaluating the coefficients of polynomial equation (5.18) using parameter values

in Table 5.2, we have

b3 = 2531.7, b2 = 10981, b1 = 3545.26, b0 = 2215.745.

Thus polynomial equation (5.18), becomes

λ4 + 2531.7λ3 + 10981λ2 + 3545.26λ+ 2215.745 = 0.

Using polynomial function in MATLAB, the eigenvalues obtained are

λ1 = −0.7792, λ2 = −248.64, λ3 = −1.789− 2.868i, λ4 = −1.789 + 2.86i.

Since Re(λi) < 0, the endemic steady state is locally asymptotically stable. This

ends the proof.

5.4 Global stability of the equilibria

In this Section we deal with the global stability of steady states of model (5.1)

using Lyapunov functionals with LaSalle’s invariant principle. Since it is often hard

to construct appropriate Lyapunov functions especially in epidemiological models

with nonlinear and bilinear incidence rates, existing techniques for constructing

Lyapunov functions have been improved see Vargas-De-León (2011). We propose

the combination of quadratic and linear Lyapunov forms in the construction of

Lyapunov function to prove a Theorem for global stability of disease–free steady

state of the form

U(x1, x2, x3, x4) = c
(∑2

i=1
1

2x∗i
(xi − x∗i )2

)
+
∑4

i=3(xi − x∗i ).
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where c is a positive constant,
∑2

i=1
1

2x∗i
(xi − x∗i )2 represents a class containing

susceptible population and
∑4

i=3(xi − x∗i ) represents the remaining classes e.g

infected and recovered. Whereas the Goh–Lotka–Voltera Logarithmic of the form

V (x1, x2, x3, x4) = c(
∑n

i=1(xi − x∗i − x∗i ln xix∗i ),

is used to prove the Theorem on global stability of the endemic steady state.

5.4.1 Global stability of the disease–free steady state

Theorem 5.4.1. By Proposition 5.3.1, if the disease–free steady state E∗0 of

model (5.1) is asymptotically stable, then E∗0 is globally asymptotically stable in

D.

Proof. Consider U : D → R that is defined by

U(Su, Sa, I, R) = c
( 1

2S0
u

(Su − S0
u)

2 +
1

2S0
a

(Sa − S0
a)

2 + (I − I0)
)

+ c(R−R0). (5.19)

with c = 1. We find the derivative of the positive semidefinite function with

respect to time along the solution of model system (5.1) to get

dU

dt
=

Su − S0
u

S0
u

Ṡu +
Sa − S0

a

S0
a

Ṡa + İ + Ṙ,

dU

dt
= υSuI(

Sa
S0
a

− Su
S0
u

) + ξSa(
Su
S0
u

− Sa
S0
a

) +
φI

1 + τI
(1− p)(2 +

Sa
S0
a

) + β2SaI(2− Sa
S0
a

)

+ (β − β1m

m+ I
)(2− Su

S0
u

)SuI − µ
(S2

u

S0
u

(1− S0
u

Su
) +

S2
a

Sa
(1− S0

a

Sa
) + I +R

)
− (δI + γR),

dU

dt
≤ β2SaI(2− Sa

S0
a

) +
S2
a

Sa
(1− S0

a

Sa
) + (β − β1m

m+ I
)(2− Su

S0
u

)SuI

− µ(I +R)− (δI + γR). (5.20)
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Lemma 5.4.1. Let a1, a2, . . . , am be m positive numbers. The arithmetic mean

ā = a1+a2+···+am
m

is greater or equal to the geometric mean ā∗ = (a1×a2×· · ·×am)
1
m ,

that is ā ≥ ā∗ . Applying Lemma 5.4.1 to equation (5.20), we have

dU

dt
≤ β2SaI(2− Sa

S0
a

) +
S2
a

Sa
(1− S0

a

Sa
)

+ (β − β1m

m+ I
)(2− Su

S0
u

)SuI. (5.21)

Thus, due to local stability of E0 or E1, then dU
dt
≤ 0 for all (Su, Sa, I, R) ∈ D.

However, the strict equality dU
dt

= 0 is valid for Su = S0
u, Sa = S0

a, I = 0 and

R = 0. Then the largest invariant set {(Su, Sa, I, R) ∈ D : dU
dt

= 0} is reduced to

the disease–free steady state E∗0 . Therefore, by the LaSalle’s Invariance Principle

LaSalle (1976) E∗0 is an attractive point that is globally asymptotically stable in

D.�

5.4.2 Global stability of the endemic–steady state

Theorem 5.4.2. If by Proposition 5.3.1, the unique endemic equilibrium of

model (5.1) is asymptotically stable, then E∗ is globally asymptotically stable in

the interior of D.

Proof. The Lyapunov function is defined as

W (Su, Sa, I, R) = c1

(
Su − S∗u − S∗u ln

Su
S∗u

+ Sa − S∗a − S∗a ln
Sa
S∗a

)
+ c2

(
I − I∗ − I∗ ln

I

I∗
+R−R∗ −R∗ ln

R

R∗

)
(5.22)

with c1 = 1, c2 = R0 = (γ+µ)
(Φ+µ+δ)(γ+µ)−pΦγ .

FunctionW in (5.22) is defined, continuous and positive definite for all Su, Sa, I, R >

0. Thus, the function W (Su, Sa, I, R) takes the value W (Su, Sa, I, R) = 0 at the
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steady state E∗, and the minimum value of W (Su, Sa, I, R) occurs at the endemic

steady state E∗. We compute the derivative of W along the solution trajectories

of model (5.1), as

Ẇ = Ṡu(1−
S∗u
Su

) + Ṡa(1−
S∗a
Sa

) + c2

(
İ(1− I∗

I
) + Ṙ(1− R∗

R

)
,

= A(1− S∗u
Su

) + ξS∗a(1−
S∗u
Su

) + g(I∗)S∗u(
S∗u
Su
− 1) + υI∗S∗u(

S∗u
Su
− 1) + µS∗u(

S∗u
Su
− 1)

+ υI∗S∗u(1−
S∗a
Sa

) + (1− p)φT (I∗)(1− S∗a
Sa

) + β2I
∗S∗a(

S∗a
Sa
− 1)

+ ξSa(
S∗a
Sa
− 1) + µS∗a(

S∗a
Sa
− 1) + c2

(
g(I∗)S∗u(1−

I∗

I
) + β2S

∗
aI
∗(1− I∗

I
)

+ γR∗(1− I∗

I
) + φT (I∗)(

I∗

I
− 1) + (µ+ δ)I∗(

I∗

I
− 1)

+ pφT (I∗)(1− R∗

R
) + (γ + µ)R∗(

R∗

R
− 1)

)
. (5.23)

Since (S∗u, S
∗
a, I
∗, R∗) is an endemic steady state of model (5.1), we have

B = g(I∗)S∗u + υIS∗u + µS∗u − ξS∗a

and making a substitution of B in equation (5.23) and collecting like terms, we

get

Ẇ = I∗S∗u

(
υ(1− S∗a

Sa
) + c2(β − β1m

m+ I∗

)
− µ(Sa(1−

S∗a
Sa

)

+ c2I
∗
(

1− I∗

I
) +R∗(1− R∗

R
)
)

+
c2γR

∗2

R
(1− R

R∗
I∗

I
)

+ ΦT (I∗)p
S∗a
Sa

(1− c2
R∗

R

Sa
S∗a

) + ΦT (I∗)(1− S∗a
Sa

)

+ pc2ΦT (I∗)− ΦT (I∗)c2(1− I∗

I
)− δc2I

∗(1− I∗

I
)

+
β2S

∗2
a

Sa
(1− Sa

S∗a

I∗

I
). (5.24)
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Ẇ ≤ υ(1− S∗a
Sa

)I∗S∗u +R0I
∗
(

1− I∗

I
) +R∗(1− R∗

R
)
)

+
R0γR

∗2

R
(1− R

R∗
I∗

I
) +

β2S
∗2
a

Sa
(1− Sa

S∗a

I∗

I
)

+ ΦT (I∗)(1− S∗a
Sa

). (5.25)

Hence since the arithmetic mean exceeds the geometric mean, we have

(1− S∗
a

Sa
) ≤ 0, (1− R∗

R
) ≤ 0 and (1− I∗

I
) ≤ 0.

We note that all model parameters are positive, therefore Ẇ ≤ 0 for R0 > 1 and

the equality holds if and only if S∗a = Sa, I∗ = I, R∗ = R. Hence, W is a Lyapunov

function on the interior of D, with the largest compact invariant subset of the

set where Ẇ = 0 is a singleton {(Su, Sa, I, R) = S∗u, S
∗
a, I
∗, R∗}. By LaSalle’s

invariance principle LaSalle (1976), it follows that the endemic equilibrium E∗ of

model (5.1) is globally asymptotically stable in the feasible region D if it exists.

5.4.3 Sensitivity analysis of model epidemiological param-

eters on the control reproduction number

In this section, model parameters are varied with respect to the control repro-

duction number, R0 of model (5.1). Carrying out a sensitivity analysis of the

model parameters will help us in identifying and verifying model epidemiological

parameters that most affect the control reproduction number. Further, values

obtained for sensitivity indexes indicate epidemiological parameters to be targeted

for intervention purposes. The normalized forward sensitivity index technique is

used to obtain the index of R0 with respect to the parameters (Table 5.2). Hence,

4R0
q = ∂R0

∂q
× q

R0
, with R0 =variable and q =A differentiable parameter.

Since the availability of literature and data especially on antibiotic resistance

awareness of pneumococcal pneumonia is lacking, the qualitative predictions of

our model (5.1) is dependent on estimating some of the epidemiological parameter
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values Table 5.1.

Table 5.1: Parameters values

Parameter Value/day−1 Ref

B 5 assd

β 0.0417 (Opatowski et al., 2010)

β1 0.0046 assd

β2 0.000007498 assd

γ 0.00145 assd

µ 2.0× 10−4 (Kizito & Tumwiine, 2018)

m 0.5 assd

δ 0.1 (Ruhe & Hasbun, 2003; Henneman, 2012)

ξ 0.3 (Greenhalgh et al., 2015)

Φ 0.9 (Lipsitch, 2001)

D 1-14 days (Pajuelo et al., 2018)

τ 0.2703 assd

p 0− 0.03 (Obolski et al., 2015)

υ 0.0029 assd

From Table 5.2, the positive sign of sensitivity index of the control reproduction

number with respect to the model parameters indicates that an increase (or

decrease) in the value of each parameter in such a category will lead to an increase

(or decrease) in the control reproduction number of the disease. Whereas the

negative sign of sensitivity index of the control reproduction number with respect
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Table 5.2: Sensitivity index (S.I) of R0 w.r.t the parameters

Code Parameter S.I

1 β +1.07189

2 β1 -0.11824

3 β2 +0.04635

4 p +0.00079

5 ξ +0.95282

6 υ -0.95345

7 B -0.13570

8 µ -0.04621

9 δ -0.10006

10 Φ -0.89974

11 γ +0.79958

Figure 5.2: Sensitivity indices of R0, in relation to epidemiological parameters.

to the model epidemiological parameters implies that, an increase (or decrease)

in the value of the epidemiological parameter shall give rise to a corresponding

decrease (or increase) in the control reproduction number. For instance in Fig-

ure 5.2 the sensitivity (4R0
ξ ≈ 1), means that, when ξ is increased (or decreased)
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by 10%, increases or decreases R0 by 10%. Further, Figure 5.2, shows that the

control reproduction number is most sensitive to β, γ, ξ positively and υ, Φ nega-

tively. Thus, with sensitivity analysis, one is able to get appropriate information

on epidemiological parameters that can be targeted for intervention strategies

that would help in preventing and controlling the transmission of pneumococcal

pneumonia.

5.5 Model results and discussion

This Section deals with the numerical simulation results of model (5.1), that

are carried out in MATLAB’s standard solver for ODEs, the inbuilt function

ode45. The function implements a Runge–Kutta method with variable time

step for efficient computation. A discussion is also given. The epidemiological

parameters chosen for the purpose of simulation are given in Table 5.1. The

importance of R0 is well demonstrated in all simulations. From Figure 5.3(a) the

Figure 5.3: Stability of the disease–free steady state (a) With parameter values
β = 0.0001865 and β1 = 0.00046. (b) With parameter values β = 0.0417, γ =
0.00145, β1 = 0.046 and β2 = 0.00007498. Choosing initial values Su = 103, Sa =
24896, I = 0, R = 0 and all the parameter values are the same as in Table 5.2

Unaware and Aware populations approach disease–free steady state with unaware
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individuals maintaining a high number compared to the aware individuals. The

control reproduction number is less than unity that is R0 = 0.3323 < 1, thus the

disease–free steady state is stable. The stability of the disease–free steady state

means pneumococcus bacteria can completely be eliminated from the population

and no more cases of pneumococcal pneumonia can be reported. Figure 5.3(b),

shows that if R0 = 1.9258 > 1, the disease–free steady state is unstable, implying

that if one infected individual is introduced in a wholly susceptible population,

infected cases would rise and more unaware individuals are at a risk of contract-

ing pneumococcus bacteria. This would require control strategies to reduce the

transmission of the disease at the earliest time possible.

Considering our main results in Section ?? and 5.4, Proposition 5.3.6 and Theo-

rem 5.4.2 show that the endemic steady state is locally asymptotically stable since

Re(λi) < 0 and globally stable if R0 > 1. Figure 5.4(a), shows global stability

Figure 5.4: Stability of the endemic–steady state (a)Initial variables S∗u = 606, S∗a =
581, I∗ = 10, R∗ = 8. (b) Variables:S∗u = 40, S∗a = 20, I∗ = 1, R∗ = 1 Parameter
values β = 0.0417, γ = 0.00145, β1 = 0.046 and β2 = 0.00007498. Initial values
Su = 103, Sa = 24896, I = 0, R = 0 and all the parameter values are the same as
in Table 5.2

of all solution trajectories to an endemic steady state E∗. This implies that the

pneumocccal pneumonia will continue to propagate in the population with few
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infected individuals. Figure 5.4(b), shows that a unique endemic steady state is

attained in the long run with more infected individuals. This implies that the

pneumococcus bacteria could persist in the population, if no control measures are

instituted to reduce the risks of acquiring the infections.

Figure 5.5(a), shows an exponential decay that is; the family of curves switches

Figure 5.5: Effect of antibiotic resistance awareness and loss of information on
awareness on the control reproduction number

due to the variation of private awareness from an increasing rate of growth to a

decreasing rate, evidently suggesting the eradication of pneumococcus bacteria

because of the presence of antibiotic resistance awareness and treatment.

Figure 5.5(b), shows effect of loss of information about antibiotic resistance aware-

ness. An increase in the loss of information, implies an increase in numbers of

infected individuals and the control reproduction number is high, however, due to

the presence of treatment the disease is always eradicated from the population.

On the other hand, reducing the loss of information implies that more individuals

are aware of the transmission and are able to take control measures of the disease

and reduce its spread.

Overall, a model for the effect of antibiotic resistance awareness and saturated

treatment on the dynamics of pneumococcal pneumonia is developed and analyzed.

132



The basic reproduction number, R0 for pneumococcal pneumonia prevalence, the

conditions for existence and uniqueness of the equilibria are found. The result of

Theorem 5.3.1, indicate that if R0 ≤ 1, the disease–free steady state E∗0 is locally

asymptotically stable. Biologically, this means that pneumococcus bacteria cannot

successfully invade the susceptible population thus, can easily be wiped out as

time increases. This suggests that pneumococcal pneumonia can be controlled by

ensuring R0 is below unity. If R0 > 1, then the disease–free steady state E∗0 is

unstable, implying that the disease could manifest in the population and more

cases might arise causing an epidemic.

The quadratic–linear and Goh–voltera Lyapunov functionals approaches are used

to prove the global stabilities of the disease–free and endemic steady states respec-

tively. The results show that the endemic steady state is globally stable if R0 > 1.

To control pneumococcal pneumonia the results show that the family of de-

caying curves could help in providing mechanisms to design antibiotic awareness

strategies about antibiotic resistance in order to reduce relapse of pneumococcal

pneumonia. The threshold parameter R0 could be reduced to less than unity if

antibiotic resistance awareness and treatment are implemented simultaneously

to ensure eradication of pneumococcus bacteria. Thus spread of pneumococcus

pneumonia in the population will die out.

The next Chapter, gives the overall conclusion to the study and recommen-

dations that could help in combating the severity of co–infection of IAV and

pneumococcus and the pneumococcal pneumnia in humans.

133



CHAPTER 6

CONCLUSION AND

RECOMMENDATIONS

6.1 Conclusion

In this study, it has been found out that influenza A virus and pneumococcus

pathogens interaction with the epithelial target cells, result into acute infection

known as bacterial pneumonia (pneumococcal disease) that is a concern to public

health. The stability of steady states, co–existence and replacement of the two

pathogens in the epithelial cell population calls for serious attention from public

health sectors in order to avoid the 1918/1919 and 2009 pan endemic history

repeating itself.

The models have shown achievement in predicting the outcome of IAV and

pneumococcus co–infection within–host and the manifestation of pneumococcal

pneumonia transmission between–host. The models strongly indicated that the

spread of infection at largely depend on the contact rates with infected individuals

within a population. The maximum number of bacteria an alveolar macrophage

can catch, phagocytosis rate , number of infectious influenza A virus particles

and pneumococcus liberated from lysis of infected cells and infection rates of

pathogens are important parameters during the dynamics of IAV and pneumo-

coccus co–infection. IAV and pneumococcus co–exist with–host affecting each

other and give rise to a bifurcation state. The most virulent pathogen during

the interaction of IAV and pneumococcus with the target cells is identified to be

pneumococcus.
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The model for pneumococcal pneumonia with time delay revealed that time

delays in the latent stage and infected stage (delay by infected individuals to seek

medical attention) during the spread of the disease give rise to Hopf–bifurcations.

Larger delays lead to instabilities of the systems that maintains the infection in

the population. Whereas small delays lead to the stability of the system implying

that the infection can be wiped out in the population.

Pneumococcal pneumonia being a seasonal infection, it causes many death in

children below five years of age and in the elderly. A mathematical model for

pneumococcal pneumonia with antibiotic resistance awareness and saturated treat-

ment revealed that such interventions are paramount in reducing the incidence in

humans. For successful control of the disease in the population, it was found out

that R0 must be maintained below unity.

6.2 Recommendations

The findings from this study will be able to inform health providers, modelers,

decision makers the level at which the co–infection is likely to affect the human

population and devise appropriate policies and interventions to combat the disease.

Health practitioners could develop educational workshops/conferences or training

programmes to educate people about prevention and control strategies of influenza

A and pneumococcal co–infection. Awareness programs through media and pri-

vate awareness make individuals aware about the spread and control of a disease.

Individuals are able to take various precautions (e.g. responding to vaccination

programs, taking preventive medicine, vaccination, and taking medication timely

and social distancing), to reduce their chances of being infected and re–infected
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(relapsing).

For smooth control of pneumococcal pneumonia, there should not be much delay in

seeking medical care by individuals, because there are high chances of individuals

developing severe infections that require costly treatment. Organizing awareness

campaign about antibiotic resistance during co–infections of viral–bacterial epi-

demics could be given priority to avoid persistence of the disease in the population.

This work will act as a podium for further research on ‘viral–bacterial infec-

tions’. Researchers, should devise strategies to decrease the pathogen fitness RIP

to less than unity to help in prevention and control of pneumococcal establishment

in a host that is already infected with influenza A virus. Disseminating up to

date data on viral–bacterial interactions in humans within–host should be given

priority.

6.3 Future research direction

Modeling viral–bacterial dynamics hasn’t been given priority of study, that we

believe new ideas in this study will improve research of infectious diseases. Indeed,

there is much more research in modeling within–host co–infection that arise due

to secondary infections than we could possibly cover here. However, we hope to

have given a representative relish of the most innovative studies. Looking into

the future, there are numerous areas where we feel modeling of within–host of

dual pathogen interaction with an individual’s internal systems can still make

significant contributions. Clearly, as more quantitative data on the human host

cells and immune response, both cellular and humoral, become available, it will

be important to include these in the mechanistic in–host models of influenza A
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virus and pneumococcus co–infection. This will be imperative to clarify the events

during primary infection, and in the selection of appropriate vaccine in humans.

Unifying the with–host and between–host co–infection models will give a better

understanding of the spread of the disease.

Further, since time delays change the stability of dynamical systems it would be

imperative to consider optimal control and cost effectiveness with time delays in

the dynamics of pneumococcal pneumonia.
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APPENDICES

Appendix A1: Coefficients to polynomial equation (3.37)

h6 = 1, h5 = (µvb+(αv + δb)− (k0+k3+k5+k6), h4 = L4+ ξ4, h3 = L3+ ξ3, h2 = L2+ ξ2, h1 =

L1 + ξ1, h0 = L0 + ξ0

L4 = k0

(
k3 + k5 − (αb + δv)− µvb + k6

)
+ k3

(
k5 − µvb + k6 − (αb + δv)

)
+ k5(−µvb − k6(µvb +

αb) + µb(αb + δv)− k4τvnv,
L3 = β∗vIbτvbnvb(k0 + k3 + k6 + k5) + (µvbk6(k5 − k0 + (αb + δv)− k3) + k0µvb((αb + δv)− k5)−
(αb + αv)(−µvb + k6) + k4βbB

∗τvbnvb,

L2 = k0k3k5(−µvb+k6−(αb+δv))−β∗vIbβ∗vV ∗τvbnvb(k0+k6+k3)+k6k0(β∗vI∗b τvbnvb−k0k3k6(µvb+

(αb+δv))−βbS∗βbB∗τbnb(−(αb+δv)−µvb+k3)+βbS
∗τbnb(k4τvnv+β

∗
vIbτvbnvb)+k6k5µvbτvnv−

k1τvbnvb(k2β
∗
bB
∗ + βbB

∗β∗vV
∗),

L1 = τbnbβbS
∗µvb(αb+δv)−βbS∗β∗vI∗b τbnbτvbnvb)(k3+k0)+β∗vV ∗τvbnvb(k1βbB∗+k0β∗vI∗b )(k6+

k3)+ τvbnvbβ
∗
bB
∗(k1k2−k0k4)(k5+k6)+βbS∗τbnb(k4β∗bB∗τvbnvb+k1k2τvnv)+k0k3k5µvb(k6−

(αb+δv))−βbS∗β∗bB∗µvbτbnb(k3−(αb+δv))+k3k5k6(αb+δv)(k0−µvb)−β∗b I∗v τvbnvb(k1βbB∗τbnb)−
k4βbS

∗τbnbτvnv(k0 − µvb) + k2βbS
∗τ2b n

2
bτvnv,

L0 = β∗vIbτvbnvbτbnbβ
2
bS
∗B∗+k3τvbnvb(k1βbB

∗+k0β
∗
vIb)(β

∗
b τbnb−β∗vk6)+k0βbτbnb−k1k2k5k6+

k0k4k5k6 − k0k3k5k6β∗vIbτvbnvb − k3τbnbβbS∗µvb(αb + δv),
ξ4 = −(αb + δv) + k6δv − (β∗vτvbnvb + βbS

∗τbnb)

ξ3 = k4τvnv

(
k0 + k5 − µvb + k6 + k3

)
+ βbS

∗τbnb(k0 − µvb − (αb + δv))− k5(αb + δv)(−µvb +

k0 + k3 + k6) + k0k3(−µvb + k6 − (αb + δv) + k5) + k5k6(k3 + k0) + k1k2τvnv − βbS∗βbB∗τbnb −
k3k5µvb − k0k6(αb + δv)− β∗vIbβ∗vV ∗τvbnvb

)
,

ξ2 = k5µvb(αb+δv)(k0+k6)+k1k2τvnv(k5+k6−µvb)−k0k5k6
(
αb+δv)+(k0+k3)

)
+(k3µvb(αb+

δv) + k4(β
∗
bB
∗τvbnvb − k0τvnv))(k5 + k6 + k0) + k5µvbτvnv(k4) + k0β

∗
vτvbnvb(k5 + k3 + k6) +

k6β
∗
vτvbnvb(k5+k3)+βbS

∗τbnb

(
−(αb+δv)(k0−µvb)+k3(k0−(αb+δv)−µvb)

)
−k0µvb(βbS

∗τbnb+

k6(αb + δv))− β∗vIbτbnb(−β∗b I∗v τvnv + β∗b I
∗
v τvbnvb)− k4µvbk6τvnv + k3k5β

∗
vV
∗τvbnvb

)
,

ξ1 = k0k3βbS
∗τbnb

(
− µvb − (αb + δv)

)
+ k0k4k6τvnv(−µvb + k5) + µvb(αb + δv)(k3 + k5) +

β∗b I
∗
vβ
∗
vI
∗
b τbnbτvnv(−µvb+k0)−β∗vI∗b β∗b I∗v τvbnvbτbnb+k5(k3β∗vI∗b τvbnvb−k4µvbτvnv)(k6+k0)−

βbS
∗τbnbβbB

∗
(
k4τvnv + β∗vI

∗
b τvbnvb

)
− k1k2k5τvnv(−µvb + k6)− k1βbB∗τbnb

(
− β∗b I∗v τvnv

)
+

βbS
∗τbnbk3βbB

∗(αb+δv)−β∗vτvbnvb(β∗2b B∗τbnb+k3k6β
∗
v)−k6(k4k5β∗bB∗τvbnvb+k1k2µvbτvnv),

ξ0 = (k0β
∗
b I
∗
vβ
∗
vIb+k0k4k5k6)(β

∗
bB
∗τvbnvb+µvbτvnv)+k3k5k6µvb(αb+δv)+k0τvbnvbτbnbβbS

∗β∗vIb−
k1τ

2
b n

2
bβbS

∗(k4βbB
∗+k2β

∗
vIb)(β

∗
bB
∗τvbnvb+µvbτvnv)(µvbτvnv+β

∗
bB
∗τvbnvb)(β

∗
b I
∗
vβbB

∗+k2βbB
∗),

Appendix A2: Illustrations of proving Theorem 3.7.4

We note that, function L(X) satisfies
∂L(X)
∂S

= 1− [ βvS∗V ∗

1+aS∗+bV ∗ (1+aφ+bV ∗

βvφV ∗ ) + βbS
∗B∗

βbφB∗ ]SS∗ ,

∂L(X)
∂S

= 1− (S
∗

S
( 1+aS+bV ∗

1+aS∗+bV ∗ + 1)− S∗

S∗ (1+aS∗+bV ∗

1+aS∗+bV ∗ + 1))
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∂L(X)
∂S

= 1− (S
∗

S
(1+aS+bV ∗

1+aS∗+bV ∗ )− S∗

S
+ 2)

∂L(X)
∂S

= 3− S∗

S
1+aS+bV ∗

1+aS∗+bV ∗ − S∗

S
= 3− f1(S∗,V ∗)

f1(S,V ∗)
− S∗

S

∂L(X)
∂Iv

= 1− I∗v
Iv
, ∂L(X)

∂IB
= 1− I∗b

Ib
, ∂L(X)
∂Ivb

= 1− I∗vb
Ivb
, ∂L(X)

∂B
= 1− I∗b

B
, ∂L(X)

∂V
= 1− V ∗

V

Let the vertices’s corresponding to system (3.1) be given as

L1 = S−S∗−
∫ S
S∗ [f1(S∗,V ∗)

f1(φ,V ∗)
+ f2(S∗,B∗)

f2(φ,B∗)
]dφ, L2 = (Iv− I∗v − I∗v lnIv), L3 = (Ib− I∗b −

I∗b lnIb), L4 = (Ivb−I∗vb−I∗vblnIvb), L5 = (B−B∗−lnB∗), L6 = E(V −V ∗−V ∗lnV )

By equating the R.H.S of model (3.1) to zero we get

Λ =
βvS

∗V ∗

1 + aS∗ + bV ∗
+ βbS

∗B∗ + µsS
∗,

βvS
∗V ∗

1 + aS∗ + bV ∗
= (β∗bB

∗ + µv)I
∗
v ,

µbI
∗
b = βbS

∗B∗ − β∗vI∗b V ∗,

µvbI
∗
vb = β∗vI

∗
b V
∗ + β∗b I

∗
vB
∗,

(αv + δb +
γamA

A+ nB∗
)B∗ = rB∗(1− B∗

K
) + τbnbI

,
b (1)

(αb + δv)V
∗ = τvnvI

∗
v + τvbnvbI

∗
vb.

Using system (1) and substituting for Λ in equation (3.44), we have

L̇1 =
(

3− f1(S∗, V ∗)

f1(S, V ∗)
− S∗

S

)( βvS
∗V ∗

1 + aS∗ + bV ∗
+ βbS

∗B∗ + µsS
∗
)

−
(

3− f1(S∗, V ∗)

f1(S, V ∗)
− S∗

S

)( βvSV

1 + aS + bV
+ βbSB + µsS

)
(2)
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We consider Vertex 2

L̇2 = (1− I∗v
Iv

)

(
βvSV

1 + aS + bV
− β∗bBIv − µvIv

)
,

=
βvSV

1 + aS + bV
+ β∗b I

∗
vB + µvI

∗
v

− β∗bBIv − µvIv −
βvSV I

∗
v

(1 + aS + bV )Iv
. (3)

We substitute µvI∗v from system (1) to obtain

L̇2 = β∗bBI
∗
v +

I∗vf1(S, V )

f1(S∗, V ∗)
+ β∗b I

∗
vB
∗
(

1− BIv
B∗I∗v

)
− µvIv − f1(S∗, V ∗)

(
1− f1(S, V )

f(S∗, V ∗)

)
. (4)

In equation (4) the arithmetic mean is greater than the geometric mean then we

get

L̇2 ≤ β∗b I
∗
vB
∗(1− IvB

I∗vB
∗ ) (5)

Suppose we let: I∗v = Iv, and B∗ = B, then L̇2 = 0 and if we let f(y) =

1− y + ln y < 0 then L̇2 ≤ β∗b I
∗
vB
∗(1− IvB

I∗vB
∗ + ln IvB

I∗vB
∗ )

Consider vertex 3

L̇3 =
(

1− I∗b
Ib

)(
βbSB − β∗vV Ib − µbIb

)
,

= βbSB + βvI
∗
b V + µbI

∗
b − β∗vV Ib − µbIb −

βbSBI
∗
b

Ib
. (6)

We substitute for µbI∗b from system (1) in equation (6) to get

L̇3 = βbSB − µbIb − β∗vI∗b V ∗
(

1− V

V ∗

)
+ βbS

∗B∗
(

1− I∗bSB

IbS∗B∗

)
. (7)
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Since the arithmetic mean is greater than the geometric mean then we have

L̇3 ≤ βbS
∗B∗

(
1− I∗bSB

IbS∗B∗

)
. (8)

Hence if we let: I∗b = Ib, S = S∗ and V ∗ = V , then L̇3 = 0. Let f(x) =

1− x+ lnx < 0 such that

L̇3 ≤ βbS
∗B∗

(
1− I∗bSB

IbS∗B∗
+ ln

I∗bSB

IbS∗B∗

)
(9)

Consider vertex 4

∂L4

∂Ivb
= 1− I∗vb

Ivb
(10)

and

L̇4 =
(

1− I∗vb
Ivb

)(
β∗vIbV + β∗b IvB − µvbIvb

)
. (11)

Expanding the expression we get

L̇4 = β∗vIbV + β∗b IvB − µvbIvb −
β∗vIbV I

∗
vb

Ivb
− β∗b IvBI

∗
vb

Ivb
+ µvbI

∗
vb, (12)

substituting for µvbI∗vb from system (1) in equation (12), we obtain

L̇4 = β∗vIbV + β∗b IvB − µvbIvb + β∗vI
∗
b V
∗ + β∗b I

∗
vB
∗ − βvIbV I

∗
vb

Ivb
− β∗b IvBI

∗
vb

Ivb
(13)
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L̇4 = −
(
µvbIvb − β∗vIbV − β∗b IvB

)
+ β∗b I

∗
vB
∗
(

1− IvBI
∗
vb

I∗vB
∗Ivb

)
+ β∗vI

∗
b V
∗
(

1− I∗b V I
∗
vb

IbV ∗Ivb

)
. (14)

By comparison between the arithmetical and the geometrical means in equa-

tion (14), L̇4 is negative definite hence

L̇4 ≤ β∗b I
∗
vB
∗(1− IvBI

∗
vb

I∗vB
∗Ivb

) + β∗vI
∗
b V
∗(1− I∗b V I

∗
vb

IbV ∗Ivb
). (15)

Let y =
IvBI∗vb
I∗V B

∗Ivb
and f(y) = 1− y+ ln y such that f(y) = 0 for y = 1 and f(y) < 1

if y > 1, and let x =
I∗b V I

∗
vb

IbV ∗Ivb
such that f(x) = 1 − x + lnx < 0 for x = 1 and

f(x) < 0 if x > 1.

This implies that

L̇4 ≤ β∗b I
∗
vB
∗
(

1− IvBI
∗
vb

I∗VB
∗Ivb

+ ln
IvBI

∗
vb

I∗VB
∗Ivb

)
+ βvI

∗
b V
∗
(

1− I∗b V I
∗
vb

IbV ∗Ivb
+ ln

I∗b V I
∗
vb

IbV ∗Ivb

)
. (16)

Hence L̇4 = 0 iff Ib = I∗b , V = V ∗, Ivb = I∗vb and Iv = I∗v

Consider vertex 5

∂L5

∂B
= 1− B∗

B
,

L̇5 =
(

1− B∗

B

)(
rB(1− B

K

)
+ τbnbIb −

(
αv + δb +

γamA

A+ hB
)B
)
. (17)

Expanding the equation (17) we obtain

L̇5 = rB
(

1− B

K

)
+ τbnbIb −

(
αv + δb +

γamA

A+ hB

)
B − rB∗

(
1− B

K

)
− τbnbIb

B∗

B

+
(
αv + δb +

γam

A+ hB∗

)
B∗. (18)
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We make a substitution of
(
αv + δb + γam

A+hB∗

)
B∗ from system (1) to obtain

L̇5 = rB
(

1− B

K

)
+ τbnbIb − (αv + δb +

γam

A+ hB
)B − rB∗

(
1− B

K

)
− τbnbIb

B∗

B
+ rB∗

(
1− B∗

K

)
+ τbnbI

∗
b . (19)

Hence simplifying equation (19) yields

L̇5 = −
(
B
(
αv + δb +

γamA

A+ hB

)
− rB

(
1− B

K

)
− τbnbIb

)
+ rB∗

(
1− B∗

K

)(
1−

B(1− B
K

)

B∗(1− B∗

K
)

)
+ τbnbI

∗
b

(
1− IbB

∗

I∗bB

)
(20)

Therefore, using the comparison between the arithmetical and geometrical means

we get

L̇5 ≤ rB∗(1− B∗

K
)(1− B(1−B

K
)

B∗(1−B∗
K

)
) + τbnbI

∗
b (1− IbB

∗

I∗bB
)

Using the same arguments as in the previous equations we see that L̇5 = 0 for

B = B∗ and IB = I∗b and L̇5 < 0 by comparison of the arithmetic and geometric

means.

Consider vertex 6

∂L6

∂V
= 1− V ∗

V
,

L̇6 = (1− V ∗

V
)(τvnvIv + τvbnvbIvb − (αb + δv)V ). (21)

Equation (21) simplifies to

L̇6 = τvnvIv + τvbnvbIvb − V
(
αb + δv

)
− τvnvIvV

∗

V
− τvbnvbIvbV

∗

V

+
(
αb + δv

)
V ∗ (22)
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We substitute (αb + δv)V
∗ from system (1), to have

L̇6 = τvnvIv + τvbnvbIvb − V Big(αb + δv

)
− τvnvIvV

∗

V

− τvbnvbIvbV
∗

V
+ τvnvI

∗
v + τvbnvbI

∗
vb (23)

that reduces to:

L̇6 = −((αb + δv)V − τvnvIv − τvbnvbIvb) + τvn1I
∗
v (1− IvV ∗

I∗vV
) + τvbnvbI

∗
vb(1−

V ∗Ivb
V I∗vb

)

Since the arithmetic mean is greater than the geometric mean this implies that;

L̇6 ≤ τvnvI
∗
v (1− IvV ∗

I∗vV
) + τvbnvbI

∗
vb(1−

V ∗Ivb
V I∗vb

)

Hence given Iv = I∗v , Ivb = I∗vb and V = V ∗ , then L̇6 = 0 and L̇6 < 0

Appendix A3: Detailed mathematical coefficient
terms used in Chapter 4 with corresponding com-
puted values obtained by using parameters from
Table 4.1

Appendix A3(a): Coefficient terms in the transcendental
equation (4.13)

k4 = −(a1 + a5 + a8 + a11 + a14),

k3 = (a8(a1 + a5) + a11(a5 + a1 + a8 + a14) + a14(a5 + a1 + a8) + a1a5 − a12a13 − a2a4),
k2 = (a2a4(a8 + a11 + a14) + a12a13(a1 + a5 + a8)− a1a5(a8 + a11 + a14)− a1a8(a11 + a14)−
a11(a5a8 + a1a14)− a14(a5a8 + a5a11) + a8a11)),

k1 = (a8a11(a1a5 − a2a4) + a1a5(a8a14 + a11a14) − a2a4a14(a8 + a11) + a12a13(a2a4 − a1a5 −
a1a8 − a5a8) + a11a14(a1a8 + a5a8)), k0 = a8(a11a14 − a12a13)(a2a4 − a1a5),
l3 = −(a5+a11+a14+a1+a9), l2 = (a1(a5+a11+a14)+a5(a11+a14))+(a1a9−a3a7+a5a9+a9a11),
l1 = (a2a4(a14 + a11)− a1a5(a11 − a14)− a11a14(a1 − a5) + a12a13(a5 + a1)) + (a3a7(a5 + a11) +

a2(a4a9− a6a7)− a9a11(a1 + a5)− a1a5a9), l0 = (a12a13(a2a4− a1a5)− a11a14(a2a4 + a1a5))) +

a7a11(a2a6 − a3a5) + a9a11(a1a5 − a2a4)),m3 = (a1 + a5 + a8 + a11),

m2 = (a1a5 − a2a4 + a1a8 + a1a11 + a5a8 + a5a11 + a8a11),

m1 = (a2a4a8 − a1a5a11 + a2a4a11 − a1a8a11 − a5a8a11 − a1a5a8)),
m0 = a8a11(a1a5 − a2a4), n2 = ((a5 + a11 + a1) + a11a14 − a12a13 − a2a4),
n1 = (a11(a1 + a5) + a1a5 − a2a4), n0 = a11(a2a4 − a1a5)).
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Hence a1 = −0.01218, a2 = 5.479× 10−4, a3 = −0.1764, a4 = 2.53× 10−5,

a5 = 0.008057, a6 = −0.0003596, a7 = 0.0101, a9 = 445, a10 = 0.005455, a11 = −0.01302,
a12 = 0.0003596, a13 = 0.01096, a14 = −0.03777, a15 = −0.3319, a16 = 0.33196,

a17 = 0.3279, k4 = −0.07308, k3 = 0.001759, k2 = −0.00008172, k1 = 0.0005897,

k0 = 9.833−11, l3 = −445.2, l2 = −14.81,−1.1915, l0 = −0.0005686, m3 = −0.03531,
m2 = 0.0004299,m1 = 0.00006202,m0 = 00002674, n2 = −0.3277, n1 = 0.0003616,

n0 = 0.000001277.

Appendix A3(b): Coefficient terms in the characteristic
equation (4.14)

b4 = k4 + γ + δ, b3 = k3 + l3γ +m3δ, b2 = k2 + l2γ +m2δ + n2γδ, b1 = k1 + l1γ +m1δ + n1γδ,

b0 = loγ +m0δ + n0γδ, hence b4 = 0.7364, b3 = −148.4007, b2 = −4.9408, b1 = −0.3965, b0 =

−0.0001806.

Appendix A3(c): Coefficient terms in equation (4.25)

A4 = (p22 − p2γ2δ2q4 − 2p3), A3 = (2p1 + p23 − 2p2p4 − p2γδ2(q23 − 2q4q2)),

A2 = (p22 − 2p1p2 − p2γ2δ2(2q4q0 + q22 − 2q1q3)), A1 = p1 − p2γ2δ2(q1 − 2q2q0),

A0 = −q20p2γ2δ2,
hence A4 = 296.9, A3 = 22018, A2 = 0.3754, A1 = −0.3966, A0 = −2585× 10−11.

Appendix A3(d): Coefficient terms in Transversality condi-
tion of equation 4.29

d0 = w20τ2, f1 = 5w4
20 − (3p3w

2
20 + p1), f2 = 4p4w

3
20 − 2p2w20 , f3 = 2p2w20 − 4p4w

3
20 ,

f4 = 5w4
20 − 3p3w

2
20 , g1 = pγδ(q3w

4
20 − q1w

2
20), g2 = pγδ(q4w

5
20 + q0w20 − q2w3

20),

f5 = q1 + 2q2w20 − (3q3w
2
20 + 4q4w

3
20),

hence
p = 0.9939, p4 = 0.4064, p3 = −148.4, p2 = 0.3333, p1 = −0.3966, p0 = −0.0001895,
q4 = 0.3279, q3 = 0.6280, q2 = −0.003463, q1 = 0.00004153, q0 = 0.00002672,

164



Appendix A3(e): Critical value for seeking medical care τ20

By applying L’Hopitals rule to the arccos function of equation (4.27), let

y = arccos(Z), Z =
(p2w2

20
−p4w4

20
−p0)(q4w4

20
−q2w2

20
+q0)+(q3w3

20
−q1w20))(p3w3

20
−w5

20
−p1w20 )

pγδ

(
(q4w4

20
−q2w2

20
+q0)2−(q1w20−q3w

3
20

)2

) ,

d(y)
dw20

= − (2p2w20−4p4w3
20
−p0)(q4w4

20
−q2w2

20
+q0)+(p2w2

20
−p4w4

20
−p0)(4q4w3

20
−2q2w20 )

pγδ

(
2(q4w4−q2w2+q0))(4q4w3−2q2w)−2(q1w−q3w3)(q1−3q3w2)

√
1−Z2

)
− (p3w3

20
−w5

20
−p1w20 )(3q3w2

20
−q1)+(q3w3

20
−q1w)(3p3w2

20
−5w4

20
−p1)

pγδ

(
2(q4w4

20
−q2w2

20
+q0))(4q4w3

20
−2q2w20 )−2(q1w20−q3w

3
20

)(q1−3q3w2
20

)
√

1−Z2

) = 0.174

Appendix A4: Matlab codes used in simulations

Appendix A4(a): Matlab codes for figures in Chapter 3

function mbabazi1()
clear all;
clc;
lambda = 103;

mu1=0.0625;
mu2 = 8.9 ∗ 10−1;
n1 = 1.0 ∗ 102;
a=0.001;
b=0.002;
beta1 = 2.7 ∗ 10−5;
delt1=4;
alp2 = 3.2 ∗ 10−4;
tau1 = 1.2 ∗ 10−1;
r=27;
tau2 = 1.1 ∗ 10−2;
K = 2.3 ∗ 107;
gamma=1.25;
m=400;
delt2 = 3.2 ∗ 10−1;
alp1 = 10−1;

n2 = 104;

h=5.0;
A = 106;

beta2=0.012;
mu3 = 1.34 ∗ 10−1;
mu4 = 5.2 ∗ 10−10;
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tau3 = 2.4 ∗ 10−3;
n3=25.1;
beta3 = 7.3 ∗ 10−8;
beta4 = 4.1 ∗ 10−6;
options=odeset(’RelTol’,10−4,′AbsTol′, [10−4; 10−4; 10−4; 10−4; 10−4; 10−4]);
[T, y] = ode45(@pnemodel, [08], [4.8 ∗ 102; 10; 1; 10; 102; 107],options)
figure(10)
hold on
plot(T,abs(log(y(:,4))),’b’,’linewidth’,1)
hold off
xlabel(’Time,t/days’);ylabel(’Co-infected cell populaton/log-scale’);
%figure(11)
%hold on
%plot(T,y(:,4),’r’,’linewidth’,1)
%hold off
%xlabel(’Time,t/days’);ylabel(’Co-infected cell populaton’);
%figure(1)
%hold on
%plot(T,abs(log(y(:,1))),’r’,’linewidth’,1)
%plot(T,abs(log(y(:,4))),’g’,T,abs(log(y(:,5))),’b’,T,abs(log(y(:,6))),’r’,’linewidth’,1)
%%xlabel(’Time,t/days’);ylabel(’ infected cell population/log-scale’);
%figure(2)
%hold on
%plot(T,y(:,1),’b’,’linewidth’,1)
%plot(T,abs(log(y(:,1))),’r’,T,abs(log(y(:,4))),’b’,T,abs(log(y(:,3))),’y’,T,abs(log(y(:,2))),’–’,’linewidth’,1)
%hold off
%xlabel(’Time,t/days’);ylabel(’ uninfected cell population/log-scale’);
%figure(3)
%hold on
%plot(T,abs(log(y(:,4))),’b’,T,abs(log(y(:,1))),’r’,’linewidth’,1)
%hold off
%xlabel(’Time,t/days’);ylabel(’ cell population’);
%figure(4)
%hold on
%plot(T,y(:,4),’r’,T,y(:,1),’b’,’linewidth’,1)
%hold off
%xlabel(’Time,t/days’);ylabel(’cell population’);
%figure(5)
%hold on
%plot(y(:,5), y(:,6),’b’,’linewidth’,1)
%hold off
%xlabel(’Density of pneumococcal’);ylabel(’Density of IAV’);
%figure(6)
%hold on
%plot(y(:,5), y(:,6),’r’,’linewidth’,1)
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%hold off
%ylabel(’Density of pneumococcal’);xlabel(’Density of IAV’);
%figure(8)
%hold on
%plot(T,y(:,1),’r’,T,y(:,4),’b’,T,y(:,3),’y’,T,y(:,2),’g’,’linewidth’,1)
%hold off
%xlabel(’Time,t/days’);ylabel(’cell population’);
%figure(10)
%hold on
%plot(T,abs(log(y(:,4))),’b’,T,abs(log(y(:,3))),’r’,T,abs(log(y(:,2))),’g’,’linewidth’,1)
%hold off
%xlabel(’Time,t/days’);ylabel(’cell population/log-scale’);
%figure(12)
%hold on
%plot(T,abs(log(y(:,3))),’b’,’linewidth’,1)
%hold off
%xlabel(’Time,t/days’);ylabel(’Density of newly infected cells/log-scale’);
%xlabel(’Time,t/days’);ylabel(’cell population/log-scale’);
%figure(2)
%plot(abs(log(y(:,5))), abs(log(y(:,6))),’r’,’linewidth’,1)
%ylabel(’Density of SP/log-scale’);xlabel(’Density of IAV/log-scale’);
%figure(2)
%hold on
%plot(T,y(:,2),’b’,T,y(:,3),’r’,T,y(:,4),’g’,’linewidth’,1)
%hold off
%xlabel(’Time,t/days’);ylabel(’ cell population’);
%figure(2)
%hold on
%plot(T,abs(log(y(:,4))),’b’,T,abs(log(y(:,1))),’r’,’linewidth’,1)
%hold off
%xlabel(’Time,t/days’);ylabel(’ cell population’);
%figure(3)
%hold on
%plot(T,abs(log(y(:,5))),’b’,T,abs(log(y(:,1))),’r’,T,abs(log(y(:,6))),’g’,’linewidth’,1)
%hold off
%xlabel(’Time,t/days’);ylabel(’ cell population/log-scale ’);
%figure(4)
%hold on
%plot(T,abs(log(y(:,1))),’r’,T,abs(log(y(:,4))),’b’,’linewidth’,1)
%hold off
%xlabel(’Time,t/days’);ylabel(’ cell population/log-scale’);
%figure(5)
%hold on
%plot(T,abs(log(y(:,1))),’r’,T,abs(log(y(:,4))),’b’,T,abs(log(y(:,3))),’y’,T,abs(log(y(:,2))),’–’,’linewidth’,1)
%hold off
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%xlabel(’Time,t/days’);ylabel(’ cell population/log-scale ’);
%figure(2)
%hold on
%plot(T,y(:,4),’b’,’linewidth’,1)
%hold off %xlabel(’Time,t/days’);ylabel(’coinfected cells, Ivb(t)’);
%figure(3)
%hold on
%plot(T,y(:,5),’b’,T,y(:,5),’g’,T,y(:,1),’r’,’linewidth’,1)
%hold off
%xlabel(’uninfected,S(t)’);ylabel(’Proportion of cells infected with , B(t) and B(t)’);
%figure(3)
%hold on
%plot(T, y(:,2),’r’,’linewidth’,1)
%hold off
%xlabel(’Time,t/hours’);ylabel(’Proportion of cells infected with IAV, Iv(t)’);
%figure(3)
%hold on
%plot(T,y(:,1),’r’,T,y(:,4),’b’,’linewidth’,1)
%hold off
%xlabel(’Time,t/hours’);ylabel(’Proportion of cells, S(t) and Ivb(t)’)
function dy=pnemodel(t,y)
dy=zeros(6,1);
dy(1) = lambda− (beta1 ∗ y(1) ∗ y(6))./(1+ a ∗ y(1)+ b ∗ y(6))− beta2 ∗ y(1) ∗ y(5)−mu1 ∗ y(1);
dy(2) = (beta1 ∗ y(1) ∗ y(6))./(1 + a ∗ y(1) + b ∗ y(6))− beta4 ∗ y(5) ∗ y(2)−mu2 ∗ y(2);
dy(3) = beta2 ∗ y(1) ∗ y(5)−mu3 ∗ y(3)− beta3 ∗ y(6) ∗ y(3);
dy(4) = beta4 ∗ y(5) ∗ y(2) + beta3 ∗ y(6) ∗ y(3)−mu4 ∗ y(4);
dy(5) = r ∗ y(5) ∗ (1 − y(5)./K) + tau2 ∗ n2 ∗ y(3) − (gamma ∗m ∗ A ∗ y(5))./A + h ∗ y(5) −
(alp1 + delt2) ∗ y(5);
dy(6) = tau1 ∗ n1 ∗ y(2) + y(4) ∗ n3 ∗ tau3− (alp2 + delt1) ∗ y(6);
end
end

Appendix A4(b): dde23 codes for figures in Chapter 4

function DFE()
clear all;
clc;
nu = 2.53 ∗ 10−2;
b = 22;

beta = 1.0102 ∗ 10−5;
mu = 2.0547 ∗ 10−3;
zeta = 5.4794 ∗ 10−4;
gamma = 3.3333 ∗ 10−2;
rho = 0.01096 ∗ 10−2;
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phi = 3.57144 ∗ 10−1;
vartheta = 5.4 ∗ 10−1;
delt = 0.033;

options = odeset(′RelTol′, 10−4,′AbsTol′, [10−4; 10−4; 10−4; 10−4; 10−4]);

[T, y] = ode45(@pnemodel, [0400], [10604; 103; 0; 0; 0], options)

figure(2)
hold on
plot(T, y(:, 1),′ b′, T, y(:, 2),′ r′,′ linewidth′, 1);

hold off
xlabel(’Time/days’);ylabel(’Population Size’)
function dy =pnemodel(t, y)
dy = zeros(5, 1);

dy(1) = b+ zeta ∗ y(2) + phi ∗ y(5)− (nu+mu+ beta ∗ y(5)) ∗ y(1);
dy(2) = nu ∗ y(1)− (mu+ zeta) ∗ y(2)− beta ∗ vartheta ∗ y(5) ∗ y(2);
dy(3) = beta ∗ y(5) ∗ y(1)− (gamma+mu) ∗ y(3);
dy(4) = beta ∗ vartheta ∗ y(5) ∗ y(2)− (rho+mu) ∗ y(4);
dy(5) = rho ∗ y(4) + gamma ∗ y(3)− (delt+mu+ phi) ∗ y(5);
end
end

{driver for figure 3
sol = dde23(′figure3′,′ 1′, [3280, 30, 10, 10, 100], [0, 200]);

V = sol.y;

y1 = V (1, :);

y2 = V (2, :);

y3 = V (3, :);

y4 = V (4, :);

y5 = V (5, :);

plot(sol.x, y1,′ r′)
plot(y1, y5);}
function v = figure3(t, y, Z)
ylag1=Z(:,1);
v=zeros(5,1);
nu = 2.53 ∗ 10−5;
b = 22;

betar = 1.0102 ∗ 10−4;
mu = 2.0547 ∗ 10−3;
xi = 5.4794 ∗ 10−4;
gamma = 3.3333 ∗ 10−1;
rho = 0.01096;

phi = 3.5714 ∗ 10−2;
tau1 = 1;

vartheta = 5.4 ∗ 10−1;
delta = 0.33;

v(1) = b+ xi ∗ y(2) + phi ∗ y(5)− (nu+mu+ betar ∗ y(5)) ∗ y(1);
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v(2) = nu ∗ y(1)− (mu+ xi) ∗ y(2)− betar ∗ vartheta ∗ y(5) ∗ y(2);
v(3) = betar ∗ y(5) ∗ y(1)− gamma ∗ exp(−mu ∗ tau1) ∗ Z(3, 1)−mu ∗ y(3);
v(4) = betar ∗ vartheta ∗ y(5) ∗ y(2)− (rho+mu) ∗ y(4);
v(5) = rho ∗ y(4) + gamma ∗ exp(−mu ∗ tau1) ∗ Z(3, 1)− (delta+mu+ phi) ∗ y(5);

{driver for figure 4
sol=dde(’fulgef2’, ’2’, [106, 10, 1, 1, 5], [0, 100]);
V = sol.y;

y1 = V (1, :);

y2 = V (2, :);

y3 = V (3, :);

y4 = V (4, :);

y5 = V (5, :);

plot(sol.x, sol.y(5, :),′ r′,′ LineWidth′, 1.5);

functionv = fulgef2(t, y, Z)

ylag2=Z(:,2);
v=zeros(5,1);
nu = 2.53 ∗ 10−5;
b = 22;

betar = 1.0102 ∗ 10−3;
mu = 2.0547 ∗ 10−3;
xi = 5.4794 ∗ 10−4;
gamma = 3.3333 ∗ 10−1;
rho = 1.096 ∗ 10−2;
phi = 3.5714 ∗ 10−2;
tau2 = 2;

vartheta = 5.4 ∗ 10−1;
delta = 3.3 ∗ 10−1;
function dy = pnemodel(t, y)

y = zeros(5, 1);

dy(1) = b+ xi ∗ y(2) + phi ∗ y(5)− (nu+mu+ betar ∗ y(5)) ∗ y(1);
dy(2) = nu ∗ y(1)− (mu+ xi) ∗ y(2)− betar ∗ vartheta ∗ y(5) ∗ y(2);
dy(3) = betar ∗ y(5) ∗ y(1)− gamma ∗ y(3)−mu ∗ y(3);
dy(4) = betar ∗ vartheta ∗ y(5) ∗ y(2)− (rho+mu) ∗ y(4);
dy(5) = rho ∗ y(4) + gamma ∗ y(3)− delta ∗ exp(−mu ∗ tau2) ∗ y(5)− (mu+ phi) ∗ y(5);
end
end

{driver for figure 4
sol=dde23(’figure3’, [23], [3280, 22, 100, 5, 11], [0, 4000])
V = sol.y;

y1 = V (1, :);

y2 = V (2, :);

y3 = V (3, :);

y4 = V (4, :);
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y5 = V (5, :);

plot3(sol.x, y1, y5,′ b′,’LineWidth’,1)}
function v = figure3(t, y, Z)
ylag1=Z(:,1);
ylag2=Z(:,2);
v=zeros(5,1);
nu = 2.53 ∗ 10−5;
b = 22;

betar = 1.0102 ∗ 10−4;
mu = 2.0547 ∗ 10−4;
xi = 5.4794 ∗ 10−4;
gamma = 3.3333 ∗ 10−1;
rho = 0.01096;

phi = 3.5714 ∗ 10−2;
tau1 = 2;

tau2 = 3;

vartheta = 5.4 ∗ 10−1;
delta = 0.33;

v(1) = b+ xi ∗ y(2) + phi ∗ y(5)− (nu+mu+ betar ∗ y(5)) ∗ y(1);
v(2) = nu ∗ y(1)− (mu+ xi) ∗ y(2)− betar ∗ vartheta ∗ y(5) ∗ y(2);
v(3) = betar ∗ y(5) ∗ y(1)− gammaexp(−mu ∗ tau1) ∗ Z(3, 1)−mu ∗ y(3);
v(4) = betar ∗ vartheta ∗ y(5) ∗ y(2)− (rho+mu) ∗ y(4);
v(5) = rho ∗ y(4) + gamma ∗ exp(−mu ∗ tau1) ∗ Z(3, 1)
− delta ∗ exp(−mu ∗ tau2) ∗ Z(5, 2)− (mu+ phi) ∗ y(5);

{driver for figure 5
sol=dde23(’figure5’,[22], [2099, 6, 54, 2, 100], [0, 3000])
V=sol.y;
y1=V(1,:);
y2=V(2,:);
y3=V(3,:);
y4=V(4,:);
y5=V(5,:);
plot3(y1, y2, y5)}
function v = figure5(t, y, Z)
ylag1=Z(:,1);
ylag2=Z(:,2);
v=zeros(5,1);
nu = 2.53 ∗ 10−5;
b = 22;

betar = 1.0102 ∗ 10−4;
mu = 2.0547 ∗ 10−3;
xi = 5.4794 ∗ 10−4;
gamma = 3.3333 ∗ 10−1;
rho = 1.096 ∗ 10−2;
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phi = 3.5714 ∗ 10−2;
tau1 = 2;

tau2 = 3;

vartheta = 5.4 ∗ 10−1;
delta = 0.33;

v(1) = b+ xi ∗ y(2) + phi ∗ y(5)− (nu+mu+ betar ∗ y(5)) ∗ y(1);
v(2) = nu ∗ y(1)− (mu+ xi) ∗ y(2)− betar ∗ vartheta ∗ y(5) ∗ y(2);
v(3) = betar ∗ y(5) ∗ y(1)− gamma ∗ exp(−mu ∗ tau1) ∗ Z(3, 1)−mu ∗ y(3);
v(4) = betar ∗ vartheta ∗ y(5) ∗ y(2)− (rho+mu) ∗ y(4);
v(5) = rho ∗ y(4) + gamma ∗ exp(−mu ∗ tau1) ∗ Z(3, 1)
− delta ∗ exp(−mu ∗ tau2) ∗ Z(5, 2)− (mu+ phi) ∗ y(5);

{driver for figure 5
sol=dde23(’figure10’, [0.5 2], [3280, 20, 20, 8, 10], [0,4000])
V=sol.y;
y1=V(1,:);
y2=V(2,:);
y3=V(3,:);
y4=V(4,:);
y5=V(5,:);
plot(y1,y5)}
function v = figure10(t, y, Z)
ylag1=Z(:,1); ylag2=Z(:,2); v=zeros(5,1); nu = 2.53 ∗ 10−5;
b = 22;

betar = 1.0102 ∗ 10−4;
mu = 2.0547 ∗ 10−3;
xi = 5.4794 ∗ 10−4;
gamma = 3.3333 ∗ 10−1;
rho = 1.096 ∗ 10−2;
phi = 3.5714 ∗ 10−2;
tau1 = 0.5;

tau2 = 2;

vartheta = 5.4 ∗ 10−1;
delta = 0.33;

v(1) = b+ xi ∗ y(2) + phi ∗ y(5)− (nu+mu+ betar ∗ y(5)) ∗ y(1);
v(2) = nu ∗ y(1)− (mu+ xi) ∗ y(2)− betar ∗ vartheta ∗ y(5) ∗ y(2);
v(3) = betar ∗ y(5) ∗ y(1)− gamma ∗ exp(−mu ∗ tau1) ∗ Z(3, 1)−mu ∗ y(3);
v(4) = betar ∗ vartheta ∗ y(5) ∗ y(2)− (rho+mu) ∗ y(4);
v(5) = rho ∗ y(4) + gamma ∗ exp(−mu ∗ tau1) ∗ Z(3, 1)
− delta ∗ exp(−mu ∗ tau2) ∗ Z(5, 2)− (mu+ phi) ∗ y(5);

{driver for figure 5
sol=dde23(figure14,’3’,[10, 5, 5, 2, 4, 2], [0,14])
V=sol.y;
y1=V(1,:);
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y2=V(2,:);
y3=V(3,:);
y4=V(4,:);
y5=V(5,:);
figure(1)
hold on
plot3(sol.x,y1,y5,’r’,’LineWidth’,2)
hold off}
function v = figure14(t, y, Z)
ylag2=Z(:,2);
v=zeros(5,1);
nu = 2.53 ∗ 10−5;
b = 22;

betar = 1.0102 ∗ 10−4;
mu = 2.0547 ∗ 10−3;
xi = 5.4794 ∗ 10−4;
gamma = 3.3333 ∗ 10−1;
rho = 1.096 ∗ 10−2;
phi = 3.5714 ∗ 10−3;
tau2 = 3;

vartheta = 5.4 ∗ 10−1;
delta = 0.33;

v(1) = b+ xi ∗ y(2) + phi ∗ y(5)− (nu+mu+ betar ∗ y(5)) ∗ y(1);
v(2) = nu ∗ y(1)− (mu+ xi) ∗ y(2)− betar ∗ vartheta ∗ y(5) ∗ y(2);
v(3) = betar ∗ y(5) ∗ y(1)− (gamma+mu) ∗ y(3);
v(4) = betar ∗ vartheta ∗ y(5) ∗ y(2)− (rho+mu) ∗ y(4);
v(5) = rho ∗ y(4) + gamma ∗ y(3)− delta ∗ exp(−mu ∗ tau2) ∗ Z(5, 2)
− (mu+ phi) ∗ y(5);

{driver for figure 5
sol=dde23(’figure30’, [1.5 1.5], [5586, 22, 11, 64, 100], [0,4000])
V=sol.y;
y1=V(1,:);
y2=V(2,:);
y3=V(3,:);
y4=V(4,:);
y5=V(5,:);
plot(y1,y5)}
function v = figure30(t, y, Z) ylag1=Z(:,1); ylag2=Z(:,2); v=zeros(5,1); nu = 2.53 ∗ 10−5;
b = 22;

betar = 1.0102 ∗ 10−4;
mu = 2.0547 ∗ 10−4;
xi = 5.4794 ∗ 10−4;
gamma = 3.3333 ∗ 10−1;
rho = 1.096 ∗ 10−2;
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phi = 3.5714 ∗ 10−1;
tau1 = 1.5;

tau2 = 1.5;

vartheta = 5.4 ∗ 10−1;
delta = 0.33;

v(1) = b+ xi ∗ y(2) + phi ∗ y(5)− (nu+mu+ betar ∗ y(5)) ∗ y(1);
v(2) = nu ∗ y(1)− (mu+ xi) ∗ y(2)− betar ∗ vartheta ∗ y(5) ∗ y(2);
v(3) = betar ∗ y(5) ∗ y(1)− gamma ∗ exp(−mu ∗ tau1) ∗ Z(3, 1)−mu ∗ y(3);
v(4) = betar ∗ vartheta ∗ y(5) ∗ y(2)− (rho+mu) ∗ y(4);
v(5) = rho ∗ y(4) + gamma ∗ exp(−mu ∗ tau1) ∗ Z(3, 1)− delta ∗ exp(−mu ∗ tau2) ∗ Z(5, 2)−
(mu+ phi) ∗ y(5);

Appendix A4(c): Matlab codes for figures in Chapter 5

function DFE3()
clear all;
clc;
A =5;
beta =0.0147;
beta2 = 0.7498e− 5;

beta1=0.046;
mu =0.0002;
delta=0.1;
gamma = 1.45 ∗ 10−2;
m=0.5;
phi =0.9;
tau =0.2703;
p=0.001;
xi=0.3;
upsilon=0.0039;
options=odeset(’RelTol’,10−4,′AbsTol′, [10−4; 10−4; 10−4; 10−4]);
[T, y] = ode45(@pnemodel, [0100], [200; 300; 20; 20], options)

figure(3)
hold on
plot(y(:,1),y(:,3), ’r’,’linewidth’,0.5)
hold off
xlabel(’Unaware susceptible’);ylabel(’Infected’)
function dy=pnemodel(t,y)
dy=zeros(4,1);
dy(1) = A+ xi ∗ y(2)− y(1) ∗ (beta ∗ y(3)− beta1 ∗m ∗ y(3)/(m+ y(3)))

− upsilon ∗ y(1) ∗ y(3)−mu ∗ y(1);
dy(2) = upsilon ∗ y(1) ∗ y(3)−mu ∗ y(1) + (1− p) ∗ phi ∗ y(3)/(1 + tau ∗ y(3))
− (beta2 ∗ y(3) + xi+mu) ∗ y(2);
dy(3) = y(1) ∗ (beta ∗ y(3)− beta1 ∗m ∗ y(3)/(m+ y(3))) + beta2 ∗ y(3) ∗ y(2)
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+ gamma ∗ y(4)− phi ∗ y(3)/(1 + tau ∗ y(3))− (mu+ delta) ∗ y(3);
dy(4) = p ∗ phi ∗ y(3)/(1 + tau ∗ y(3))− (gamma+mu) ∗ y(4);
end
end

function mbabazi()
clear all;
clc;
A =5;
beta = 0.046 ∗ 10−1;
beta2=0.0000749;
beta1=0.0046;
mu =0.0002;
delta=0.1;
gamma = 1.45 ∗ 10−2;
m=0.65;
phi =0.9;
tau =0.24;
p=0.02;
xi=0.3;
upsilon=0.0029;
options=odeset(’RelTol’,10−4,′AbsTol′, [10−4; 10−4; 10−4; 10−4]);
[T, y] = ode45(@pnemodel, [0100], [20; 500; 20; 10], options)

figure(1)
hold on
plot(T,abs(log(y(:,4))),’r’,’linewidth’,2);
hold off
xlabel(’Time/days’);ylabel(’ Population size’)
%plot( T,abs(log(y(:,1))),’b’,T,abs(log(y(:,2))),’y’, T, abs(log(y(:, 3))),’k’, T, abs(log(y(:, 4))),’r’,’linewidth’,0.5)
%plot(T,abs(log(y(:,1))),’b’, T, y(:, 2),’r’,’T, y(:,3),’g’, T, y(:, 4),’p’,linewidth’,1);
%figure(2)
%hold on
%plot3( y(:,4),y(:,2),y(:,1) );
%plot(T,y(:,1),’b’,T, y(:,2),’r’)
%plot(T,y(:,2),’b’,T, y(:, 5),’r’, T,y(:,1),’g’,’linewidth’,0.5);
%hold off
%xlabel(’Time/days’);ylabel(’Infected popn, I’)
%xlabel(’Time/days’);ylabel(’vaccinated, V’)
function dy=pnemodel(t,y)
dy=zeros(4,1);
dy(1) = A+ xi ∗ y(2)− y(1) ∗ (beta ∗ y(3)− beta1 ∗m ∗ y(3)/(m+ y(3)))

− upsilon ∗ y(1) ∗ y(3)−mu ∗ y(1);
dy(2) = upsilon ∗ y(1) ∗ y(3)−mu ∗ y(1) + (1− p) ∗ phi ∗ y(3)/(1 + tau ∗ y(3))
− (beta2 ∗ y(3) + xi+mu) ∗ y(2);
dy(3) = y(1) ∗ (beta ∗ y(3)− beta1 ∗m ∗ y(3)/(m+ y(3))) + beta2 ∗ y(3) ∗ y(2)
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+ gamma ∗ y(4)− phi ∗ y(3)/(1 + tau ∗ y(3))− (mu+ delta) ∗ y(3);
dy(4) = p ∗ phi ∗ y(3)/(1 + tau ∗ y(3))− (gamma+mu) ∗ y(4);
end
end
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